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Algorithms  and  procedures  to  monitor  human  head  motions  based  on  three  vision 
models (CIECAM’97, RETINA, and BMV) and detection of local facial landmarks are 
presented. They are evaluated on video image sequences monitoring the head positions 
of subjects (n=5) with different skin colours. The range of illumination conditions for 
high performance of the developed algorithms has been determined (more than 30 cd/
m2).  At  this  illumination  level,  face  segmentation  and facial  landmark  detection  are 
correctly performed (p = 1 for segmentation, p = 0.98 for landmark detection).

Introduction

Estimation  of  human  head  motions  is 
important  for many practical  tasks,  including 
medicine  applications  [3-5,  8,  10,  13-17].  In 
particular,  head  motions  can  significantly 
degrade the quality of functional brain studies 
[4, 8, 10, 14, 16]. Hence, motion tracking and 
correction  is  necessary  to  preserve  image 
resolution  and  to  ensure  that  quantitative 
tomography data are applied as accurately as 
possible. The known methods [4, 8, 10, 15, 17] 
to reduce the degrading effects of motion fall 
into  several  categories:  image realignment  in 
frame-mode  or  list-mode  acquisition,  optical 
tracking  systems,  motion  restriction  devices 
mounted  on  a  patient’s  head,  and  their 
combinations.  Up  to  now,  optical  tracking 
systems, i.e., video camera based systems has 
proved better in terms of simplicity. However, 
the  accuracy  of  the  detection  of  motion 
parameters  still  post  a challenge.  One of  the 
prospective  approach  to  solve  the  similar 
problem is concerned with the application of 
biological  vision  mechanisms,  especially  the 
Foveal  Systems  [2,  3].  The  Foveal  Systems 
imitate  space-variant  visual  acuity,  changing 
from the center of the retina (the fovea) to its 
periphery,  and  controlling  attention 
mechanisms  for  human  gaze  while  image 
viewing.  In  our  study,  a  new  approach  to 

develop a motion correction system for brain 
tomography  based  on  three  biologically 
motivated  models  is  proposed.  One model  is 
CIECAM  [6,  9]  for  measuring  colour 
appearance  invariantly  to  illuminating 
conditions.  The  second  one  is  a  Behavior 
Model  of  Vision  (BMV)  simulating  some 
mechanisms  of  the  human  vision  system for 
perceiving shapes [11].  The third model  is  a 
simplified  retina-like  neural  networks  model 
for  motion  detection  [12].  These  models  are 
used for colour segmentation of facial area on 
initial  pictures,  detection  of  Local  Facial 
Landmarks,  LFL  (external  eye  corners  and 
middle  point  of  nose  basement),  and motion 
moment determination respectively. Earlier [1, 
7],  the  basic  algorithms  and  overall  system 
architecture have been described in details. In 
this paper, some modifications of this system 
are presented based on the results of computer 
simulation  on  processing  video  image 
sequences  monitoring  subjects  with  different 
skin colours at various illuminaton conditions.

Basic algorithms and procedures 

The proposed system includes following basic 
modules (Fig. 1). The input module consists of 
two  digital  cameras  to  monitor  the  head 
movements for a subject. Before the shooting, 
cameras  are  calibrated.  The  first  captured 
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image  of  the  subject  are  segmented  to 
determine face area and then segmented facial 
image fragments are processed to detect LFLs 
(Fig.  2).  After  that  the  coordinates  of  LFLs 
detected  on  initial  images  are  fed  into  the 
module of head movements detection to locate 
the receptive fields (RF) of their elements on 
corresponding image points (Fig. 3, b). These 
video  images  are  processed  by  motion 
detection module in real-time. If  a motion is 
detected on any picture of video sequences, the 
picture is stamped at this time moment with a 
signal to determine the new positions of LFL 
being generated.  A set of landmark positions 
for each motion moment during video session 
is stored inside the system to calculate motion 
parameters.

Fig.  1.  Overview  of  the  system  for  head  motion 
detection and analysis.

Fig. 2. Feature vectors of facial landmarks for a subject: 
(a) right eye corner, (b) middle point of nose basement, 
(c) left eye corner.

Fig.  3.  An  element  of  the  retina-like  model  (a)  and 
receptive field location for three excitatory neurons on a 
facial landmark (b).

In  the  computer  implementation  of  the  face 
segmentation  algorithms  and  procedures,  the 
values of colour attributes of hue, chroma, and 
lightness  calculated  by  CIECAM,  which  are 
the  property  of  facial  skin  colours,  can  be 
gained  by  using  the  averaged  range  for  the 
given skin colours or by obtaining the colour 
range  for  the  first  image  of  a  sequence  of 
pictures for a given subject. These ranges are 
then applied as a threshold to segment the head 
from the rest of the pictures. 
According  to  the  preliminary  evaluation, 
external eye corners and the middle point of a 
nose basement are chosen as LFL, which is in 
the  consideration  that  they  have  a  set  of 
relatively  constant  local  features.  In  the 
computer  implementation,  feature  description 
of each LFL (see Fig. 2) is formed by space-
variant  input  window  and  represented  by  a 
multidimensional  vector.  The  vector 
components are the values of primary features 
detected  in  the  vicinity  of  each  of  49  input 
window  nodes  Ai,  i=0,  1…48.  Each 
component of the feature vectors is in line with 
the  orientation  of  a  local  “colour”  edge 
detected  from  colour  attributes  (lightness, 
chroma,  and  hue)  that  are  extracted  by 
convolving  a  map  with  a  set  of  16  kernels. 
Each kernel is sensitive to one of 16 chosen 
orientations. The whole set of 16 kernels are 
determined  by  differences  between  two 
oriented Gaussians with shifted kernels.
Initial feature description of each chosen LFL 
is  obtained  by  positioning  an  input  window 
manually  in  the  center  of  a  corresponding 
region  on  the  first  image  only  of  the  video 
sequence  for  each  subject,  and  works  as  a 
template  feature  vector.  Then  all  the 
subsequent  images  of  the  same  subject  are 
processed by the input window to search for 



image points with feature vectors similar to the 
template feature vector. 
For the module of head movement detection, 
the basic elements apply  a pair of excitatory 
and  inhibitory  neurons  (Fig.  3,a)  that  have 
different  sizes  of  their  receptive  fields  (RF) 
and  time  delay  similar  to  [12].  Three  such 
pairs  with  embedded  RFs  are  located  on  a 
center of each LFL.

Computer simulations

Two sets of image data have been employed in 
the  computer  simulation.  The  first  image 
collection (n=12) with a subject lying down in 
the  PET  scanner  includes  the  pictures  with 
known head positions (measured by the built-
in  red  laser  beam  of  the  PET  scanner)  and 
illumination  conditions.  All  pictures 
monitoring a subject’s  head while simulating 
PET  scanning  have  the  same  resolutions 
(640x427  pixels)  and  are  recorded  by  the 
calibrated  cameras.  The  second  collection 
contains video image sequences of the subjects 
(n=4) with different skin colours under varying 
illumination levels. During a video session, the 
subjects performed voluntary head movements 
(rotation  in  plane  and  tilt  up  to  30°).  Each 
image  in  this  collection  has  a  resolution  of 
640x480  pixels.  The  examples  of  face 
segmentation  and  facial  landmark  detection 
are presented in Fig. 4.

Fig. 4. The examples of face segmentation (face areas 
are  marked  by  white  squares)  and  facial  landmark 
detection,  а)  frontal  camera,  b)  left  side  camera. 
Illumination levels in (1), (2) and (3) are equal to 353, 
78, 6 cd/m2 correspondingly.

During the computer simulation it was evident 
that  the  performance  of  the  algorithms  for 
segmentation and detection depended heavily 
on  the  illumination  level  (Fig.  5).  The 
probability  of  correct  segmentation  and 
landmark detection are equal to 1, 0.98 at high 
illumination levels compared to the low levels 
with 0.8, 0.7 respectively. 

Fig. 5. The dependence of the probability of correct face 
segmentation (black  columns) and landmark  detection 
(gray columns) on illumination level.

The activities for three excitatory neurons of 
the  retina-like  model  while  processing  video 
image sequences in real-time are presented in 
Fig. 6. It is seen that neuron sensitivity to head 
motions is dependent on its RF size.

Fig. 6. Examples of activity for three excitatory neurons 
of the retina-like model while processing video image 
sequences  in  real-time:  (a)  dynamics  of  the  output 
functions Ye for the neurons with minimal (10 pixels), 
middle (20 pixels) and maximal  (30 pixels)  RF radii. 
The  pictures  segmented  during  moments  of  sharp 
changes  of  Ye  are  shown  in  the  lower  row;  (b)  the 
number Ye values over the threshold.



Conclusion

Algorithms  and  procedures  to  monitor  head 
motions  based  on  three  vision  models 
(CIECAM’97,  RETINA,  and  BMV)  are 
presented.  The  developed  algorithms  have 
shown  very  good  performance  while 
processing video image sequences  taken with 
illumination  level  over  30  cd/m2.  At  this 
illumination level, face segmentation and LFL 
detection  are  correctly  performed  (p=1  for 
segmentation,  p=0.98 for landmark detection, 
the exactness of landmarks location is equal to 
1.45±0.85 pixels).  Preliminary  estimations 
indicate that the movement parameters can be 
obtained very accurately. In particular, rotation 
angle with less than 5° may be estimated by 
retina-like  model.  More  accurate  evaluation 
can  be  reached  by  analyzing  spatial  and 
angular  relationship  between  local  facial 
landmarks in-between pictures of a sequence. 
In the current implementation, processing time 
per a picture is equal to 150 ms, 1 s, and 1 s 
for retina-like, CIECAM`97 and BMV model 
respectively.  It  is  proposed  that  some 
modification  and  optimizations  on  those 
algorithms  may  improve  both  system 
performance and computational cost.
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