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Abstract

Colour and shape are basic characteristics of traffic signs which are used both by the driver and to develop artificial
traffic sign recognition systems. However, these sign features have not been represented robustly in the earlier developed
recognition systems, especially in disturbed viewing conditions. In this study, this information is represented by using a
human vision colour appearance model and by further developing existing behaviour model of visions. Colour appearance
model CIECAM97 has been applied to extract colour information and to segment and classify traffic signs. Whilst shape
features are extracted by the development of FOSTS model, the extension of behaviour model of visions. Recognition rate
is very high for signs under artificial transformations that imitate possible real world sign distortion (up to 50% for noise
level, 50 m for distances to signs, and 5� for perspective disturbances) for still images. For British traffic signs (n = 98)
obtained under various viewing conditions, the recognition rate is up to 95%.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Colour and shape are dominant visual features of traffic signs with distinguish characteristics and are key
information for drivers to process when driving along the road. Therefore to develop a driver assistant system
for recognition of traffic signs, this information should be utilised effectively and efficiently even in the knowl-
edge that colour and shape vary with the change of lighting conditions and viewing angles.

Colour is regulated not only for the traffic sign category (red = stop, yellow = danger, etc.) but also for the
tint of the paint that covers the sign, which should correspond, with a tolerance, to a specific wavelength in
the visible spectrum [1]. However, most colour-based techniques in computer vision run into problems if
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the illumination source varies not only in intensity but also in colour as well. This is because that the spectral
composition, and therefore the colour, of daylight change depending on weather conditions, e.g., sky with/
without clouds, time of the day, and night when all sorts of artificial lights are surrounded [1]. Many authors
therefore have developed various techniques to make use of the colour information of traffic signs. Tominaga
[2] developed clustering method in a colour space, whilst Ohlander et al. [3] used a recursive region splitting
method to achieve colour segmentation. The colour spaces they applied are HSI (Hue, Saturation, Intensity),
and L*a*b* space. These colour spaces normally limit to only one lighting condition, which is D65. Hence, the
range of each colour attribute, such as hue, will be narrowed down due to the fact that weather condition
changes with colour temperatures ranging from 5000 to 7000 K.

Shape is another powerful visual feature for recognition of signs [4–10]. However, when signs appear in
cluttered scenes, many objects may appear similar to the road signs. Also, when the viewing angles are differ-
ent, the signs will appear differently with some degree of distortion, sometimes with torn corners and occluded
parts. Furthermore, signs vary in scale: getting bigger as a vehicle moves toward them, and vary in size:
appearing relatively small with about 40–50 pixels wide at the most. Another difficulty is linked to the way
the signs are captured by the acquisition system. It is stated that all road signs will be seen with a non-zero
angle between the optical axis of each camera and the normal vector to the sign surface [11]. This angle should
be as high as 30�, depending on the distance between the sign and the cameras. Piccioloi and Campani [12]
concentrated on geometrical reasoning for the detection of triangular and circular signs. For the triangular
shapes, they segmented them using the horizontal or having a slope of the ranges [60 � e, 60 + e], [�60 � e,
�60 + e] degrees, where e is the deviation from 60 calculated from samples. Hough Transform was applied
to detect the circles. However, only two types of shape were studied. Miura et al. [4] extracted sign candidates
using white circular regions by using binarization with area filtering, which only keeps white regions whose
areas are within a predetermined range. Due to the dust of the road, the white regions sometimes may not
be the areas with higher intensity values, which will result in lots of false candidates. More recently, Escalera
et al. [13] has developed a driver support system which employs a genetic algorithm for detection of sign state
and a neural network for achieving the classification. But the neural network needs to be re-trained whenever a
new case is included, which is very time consuming.

Due to the adaptation to the environment, human can correctly identify traffic signs invariant of lighting
conditions and viewing angles. Therefore invariant features can be extracted using vision models. In this study,
two vision models have been applied and developed. One model is CIECAM97 for measuring colour appear-
ance invariant of lighting conditions and is utilised to extract colour features. The other vision model, foveal
system for traffic signs (FOSTS), is developed based on behaviour model of visions (BMV) model imitating
some mechanisms of the real visual system for perceiving shapes [14–16].

CIECAM97 is a standard colour appearance model recommended by CIE (International Colour Commis-
sion on Illumination) in 1997 for measuring colour appearance under various viewing conditions [17,18]. This
model can estimate a colour appearance as accurate as an average observer. It takes weather conditions into
account and simulates human�s perception for perceiving colours under various viewing conditions and for
different media, such as reflection colours, transmissive colours, etc. For human perception, the most common
terms used for colour or colour appearance are lightness, chroma, and hue that can be predicted using the
model. The input parameters are viewing conditions, including lighting source, reference white, and the
background.

The BMV model is initially developed on the base of biologically plausible algorithms of space-variant rep-
resentation [19] of images and of specific viewing trajectory formation. It has demonstrated the ability to rec-
ognise complex grey-level images invariantly with respect to shift, plain rotation, and in a certain extent to
scale. BMV model has been developed in several directions differing in the extent of biological plausibility,
computational algorithms, architecture, etc [14,15]. One of the extensively developed directions in this field
is the development of foveal visual systems for traffic sign recognition that are considered as the most prospec-
tive in solution of computational problems in real world images processing. Like other foveal systems [20] it
imitate the changes of visual acuity from the fovea to the retinal periphery and attention mechanisms during
detailed process of choosing image fragments. A main computational advantage of the foveal systems is an
essential reduction of information that should be processed at a higher level of resolution [19] and is transfor-
mation invariant.
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In this study, two steps are applied to recognise a traffic sign in an image. The first step is to set up a data-
base containing all the standard signs. Then features of colour and shape are extracted from those signs. The
query images are normally segments from the pictures taken from real road driving conditions, which forms
the second step. The features from a query image either match one image features in the database or none at
all.

In the following sections, new algorithms and models will be presented for colour and shape representation,
context feature description, leading to traffic signs recognition. Section 2 gives detailed description of image
segmentation to segment sign-to-be sub-images from the rest of scene. Feature extraction based on vision
models will be given in Section 3. Whilst Sections 4 and 5 detail experimental recognition and Section 6 gives
conclusions.

2. Extraction of colour information

2.1. Segmentation

Segmentation is to cut sub-images containing possible signs from the rest of scene. To recognise a traffic
sign, a picture taken from the real road during driving condition should be segmented first as there might
be more than one sign in an image. A typical such image has size about 1680 · 1680 pixels while a typical stan-
dard sign in the database is 400 · 400 pixels. Because the image has different colour distribution combinations
depending on the weather condition when the photo is taken, colour appearance model CIECAM97 is applied
to perform this task.

First, the colour ranges have to be found. The colours used in the traffic signs are commonly red, blue,
black, and white. Images taken from real world are processed to find the range of colour vectors under dif-
ferent viewing conditions. A representative set of traffic signs has been classified visually according to the view-
ing and environmental conditions, such as cloudy, sunny, and rainy. Based on the images in each group, the
parameters for each viewing condition were found from [1] (e.g., direct sun light having colour temperature
5335 K and light from overcast sky having colour temperature 6500 K) for the application of the colour
appearance model. Test images taken under real viewing conditions are transformed from RGB space to
CIE XYZ values and then to LCH (Lightness, Chroma, Hue) space using the model of CIECAM97. For
the lightness values, they are similar for red, blue signs and background. Therefore only measures of Hue
and Chroma are used for segmentation. Tables 1 and 2 list the hue and chroma ranges for red and blue signs
during average day light viewing conditions, and during each weather conditions including sunny, cloudy, and
raining viewing conditions.

Based on the range of sign colours, traffic sign-to-be are segmented using quad-tree histogram method from
the rest of scenes for further processing. A quad-tree is a simplification of the idea of the split and merge algo-
rithm and the T-pyramid [21]. It will overcome the problem localise changes in the features in an image during
Table 1
The ranges of Hue and Chroma for red and blue signs for average day light viewing conditions

Colour Hue Chroma

Red 393–423 57–95
Blue 280–290 57–95
Background — 7–50

Table 2
The ranges of Hue and Chroma under different weather conditions

Weather conditions Hue Chroma

Red Blue Red Blue

Sunny day 375–411 287–305 31–43 37–59
Cloudy day 370–413 275–290 25–45 30–65
Rainy day 345–405 280–305 30–50 35–60



Fig. 1. Traffic signs are plotted on the u�v� diagram together with average daylight colour temperature of 6500 K. The left group of dots
represent blue colour while the dots on the right hand side are form red traffic signs.
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segmentation, because sometimes, it is difficult to decide whether a particular grid element should be selected
for a match, particularly if it contained a strong colour gradient (e.g., it had an edge running through it) [22].

Quad-trees involve recursively dividing the image into quadrants until all elements are homogenous, or
until a predefined, ‘‘grain,’’ size is reached. A histogram is built for each element in the quad-tree. This means
that, in general, the quad-tree method requires more storage than the grid method (and hence longer match
times). Unlike the split and merge algorithm which is used for object delineation, the divided areas are not
merged again, even if they are adjacent and their area would fit the homogeneity criterion. This ensures no
loss of spatial data.

Only blue and red signs are used in this study. Fig. 1 displays these colours plotted on a u�v� chromaticity
diagram together with colour temperature of D65 for average daylight source. All sign images with size more
than 10 · 10 pixels (pictures are taken within 100 m distance) have been segmented correctly. Sometimes, some
other contents, such as the rear red lights of cars are also segmented. However, these non-sign segments could
be rejected during shape classification and recognition stage.

3. Shape feature extraction from traffic signs

The shape features of traffic signs in this study are extracted by the further development of the BMV model,
called FOSTS model (foveal system for traffic signs).

3.1. Classification of traffic signs based on external forms

For all signs, both from standard databases and from real world images, preliminary classification is con-
ducted according to the colour, their external form (circle, rectangle, or triangle) by means of histograms of
orientations detected at resolution level 3 (RL 3). RL 3 is emulated by Gaussian convolution (kernel size is
equal 9). Each sign with a certain external form (regardless of its inner content) has characteristic relationship
of horizontally, vertically, and obliquely oriented elements at RL 3. In particular, all oriented elements have
nearly equal representations for circle signs contrary to rectangle signs (Fig. 2) that have preferable horizontal
and vertical orientations, in another words, more than 50% of all oriented segments. For each external shapes,



Fig. 2. Averaged histograms of orientations for Russian blue traffic signs in (A) standard database (n = 66) and (B) real world images
(n = 19). Where n indicates the number of sign images used for receiving the averaged histogram and quantitative evaluation of certain
oriented elements characteristic to different external form of traffic signs.
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quantitative estimations are obtained for classification into particular groups of signs. These estimations are
used also for classification of traffic signs segmented from real world images into a certain group according to
external forms.

3.2. Representation of shape features

Each image in the FOSTS model is represented by viewing trajectory and specific description of image frag-
ments in the vicinity of each fixation point. The basic features from FOSTS consist of:

(i) an image in each sensor fixation point is described by oriented segments extracted in vicinity of each of
49 sensor nodes;

(ii) the sensor nodes are located at the intersections of 16 radiating lines and three concentric circles, each
with a different radius;

(iii) orientation of segments in the vicinity of each sensor node is determined by means of calculation of
the difference between two oriented Gaussian functions with spatially shifted centres having the step
of 22.5�;

(iv) space-variant representation of image features is emulated by Gaussian convolution with different
kernels the sizes of which increase with the distance from the sensor centre. Detailed explanation is given
in [8].

To represent shape features using FOSTS, the following vectors are formed. Suppose a formal description
of feature vector F is formed by the space-variant sensor.

Suppose a formal description of feature vector is F
!

formed by the space-variant sensor. The description is
then based on detected edge orientation a in the vicinity of each of 49 sensor nodes Ai, i = 0, 1, . . ., 48 (as
shown in Fig. 3). Let x0 = X0, y0 = Y0 be co-ordinates of the central sensor node, then co-ordinates (xi, yi)
of peripheral sensor node Ai, i = 1, 2, . . ., 48 can be determined as follows:
xi ¼ X 0 þ Rl cos wk; ð1Þ
yi ¼ Y 0 þ Rl sin wk; ð2Þ
where Rl, l = 0, 1, 2 is the radius of lth concentric circle of the sensor (R0 = 3 pixels, R1 = 9, R2 = 15) and
wk = k Æ 22.5�, k = 0, 1, . . ., 15 is the angle of the radiating line corresponding to the ith sensor node. Here,
Rl simulates a space-variant resolution level. Each sensor node is characterised by edge orientation a that
dominates in the node context area (7 · 7 pixels) and its density q as follows:



Fig. 3. (A) Schematical representation of sign shape vectors using FOSTS model, context area for a node is indicated by square (B)
example of detected edges.

680 X.W. Gao et al. / J. Vis. Commun. Image R. 17 (2006) 675–685
qðAiÞ ¼ max
u

quðAiÞ

aðAiÞ ¼ u if quðAiÞ ¼ qðAiÞ;
ð3Þ
where
quðAiÞ ¼ quðxi; yiÞ ¼
1

Sðxi; yiÞ
X
m;n

SguðOrðmþ xi; nþ yiÞÞ; ð4Þ

SgpðxÞ ¼
1 if x ¼ p

0 otherwise

�
ð5Þ
and Or (x, y) is a detected edge orientation (not only dominating one) in the vicinity of the image element with
co-ordinates (x, y); S (xi, yi) is the square of the context area for ith sensor node equal to 49 pixels;
m, n = �3, . . . 0, . . . + 3; u = 0, 1, . . ., 15.

The resulting feature vector F
!ð a!; q!Þ is therefore formed as Eq. (6):
F
!

a!; q!
� �

¼ ðaðA0Þ � � � aðA48Þ; qðA0Þ � � � qðA48ÞÞ. ð6Þ
Fig. 3 illustrates the procedure of extraction of shape feature vectors.

4. Recognition

To reduce image database size that results in increase of search time for a ‘‘traffic sign-to-be’’ candidate
during recognition, the signs (both standard and obtained in real road conditions) have been preliminary clas-
sified by colour and shape. Colour classification is performed according to the parameters of sign LCH com-
position into external colour sign contour (the boundary of the coloured sign) that is determined during colour
segmentation (see Section 2.1).

4.1. Determination of sign centre

To apply shape feature for traffic sign recognition, the sign centre, i.e., the location of the sensor of
FOSTS model, has to be found from query signs to increase recognition rate. Evidently, such location
of the sensor provides the most specific sign description by detailed representation of its internal informa-
tive part. It is determined from the centre of mass for colour elements with LCH composition characters
from external sign contour. This calculation provides the geometric centre for a sign with necessary accu-
racy (±3 pixels), the extraction of a ‘‘pure’’ real world sign (without background), and from a normalised
sign with size of 40 · 40 pixels with maximal representation of informative sign parts, i.e., the scale of the
FOSTS model to each sign candidate has been adjusted by normalization sign candidate to the size of
40 · 40 pixels after determination of sign center and extraction of ‘‘pure’’ sign (all procedures are based
on external colour sign contour). Fig. 4 schematically demonstrates the determination of sign centre.



Fig. 4. Determination of the sign centres for images from the standard database (upper row) and a real world picture (lower row). Symbol
* indicates location of centre of mass for colour contour elements (column b).
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4.2. Recognition

In summary, the recognition is performed in two stages by comparison of the 49-dimensional vectors rep-
resenting a current image with template vectors stored in the database that has been classified into several col-
our/shape subgroups.

Stage 1 is based on a compressed context description of each sensor node (see Section 3.1) and has been
used for recognition of all current images. Vectors are compared according to Eq. (7):
Kb ¼
X48

i¼0

Sg Ob
i � Orw

i

� �
� 1� qb

i � qrw
i

�� ��� �� �
; where SgðxÞ ¼

1 if x ¼ 0;

0 otherwise.

�
ð7Þ
Here, Kb is the similarity coefficient for two feature vectors (current and template), Or is the dominant seg-
ment orientation in the context area of a given sensor node (orientations are determined using Eqs. (1) and (2)
and denoted as 0, 1, 2, 3, . . ., 15), superscript b stands for template database images, rw stands for the current
image; q is the density of the dominant orientation in the context area of the given sensor node. A template
image from the standard database with maximal Kb is considered as the result of recognition. According to
preliminary testing results, a threshold value for Kb is equal to 25.

Stage 2 is based on the full description of each sensor node (see Section 3.1) and is used only for current
images with confusing results from Stage 1. In particular, it is performed if difference between Kb of a candi-
date template image with maximal Kb and the next nearest candidate is less than the tolerance interval (it is
empirically determined equalling to 4). In this case, the feature vector of a current traffic sign-to-be image is
compared to template vectors for all particular oriented segments (not only with dominant orientation) in the
context area of each sensor node. A template image from the standard database with maximal averaged esti-
mation is considered as the result of recognition.

5. Results

5.1. Evaluation of shape transformation invariance

To imitate possible sign transformations in real road conditions and obtain the quantitative estimations of
recognition invariance range, several additional sign databases are created for evaluation. Graduated artificial



Fig. 5. Examples of an original (a) and transformed (b–e) images. In top row: (b–e), the noise level is equal to 5, 10, 20, and 50%,
respectively; in middles row: (b–d) initial image size simulates the distances of 20, 30, and 50 m from sign respectively; in bottom row: (b)
image transformations simulate sign viewing from the second road line at the distance of 20 m to the signs.
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transformations (noise, scale, and perspective distortions) of traffic sign have been performed. Then, the dis-
torted images are presented for recognition. Only blue circular (n = 14), red triangular (n = 49), and red cir-
cular (n = 24) signs have been used in the given experiments.

Noise have been simulated by adding graduated Gauss noise (5, 10, 20, and 50%) to the images from the
standard database (Fig. 5, upper line). The scale transformations simulates the decrease of sign size with a dis-
tance to the sign in real road conditions, such as, 20 m (initial image size—36 · 36 pixels), 30 m (initial image
size—24 · 24 pixels), and 50 m (image size—16 · 16 pixels). Before recognition, initial sign size has been nor-
malized to 40 · 40 pixels for all images. Perspective sign image transformations have simulated the changes of
viewing angles (Fig. 5 low line).

Table 3 gives the averaged results of recognition of noised and scaled traffic sign images. Recognition
rate for images with perspective transformations is equal to 1 (= 100% recognition) for red and blue cir-
cular signs, and 0.98 for red triangular signs. The obtained results indicate that recognition rate is rela-
tively high for signs with artificial transformations that represent possible sign distortions in the real
road conditions (up to 50% for noise level, 50 m of distance to signs, and 5� for perspective disturbances).
It is also shown that recognition rate for red triangular signs sharply decreases at the increase of distor-
tion levels.
Table 3
Recognition rate for artificially noised and scaled traffic sign images

Sign subgroups Transformation

Level of noise Distance to signs

5% 10% 20% 50% 20 m 30 m 50 m

Blue circular signs 1 1 1 0.93 1 1 1
Red circular signs 1 1 1 0.87 1 1 0.91
Red triangular signs 1 1 0.98 0.40 0.91 0.96 0.70



Fig. 6. The examples of recognized (A,B) and non-recognized (C) real world traffic signs. In: (1) the template images from standard
database; (2) real world signs after segmentation based on colour; (3) the same signs as in (2) after colour contour determination and size
normalisation.
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5.2. Evaluation of recognition rates

Ninety-three out of ninety-eight potential traffic sign images are correctly identified, which gives 0.95 suc-
cess recognition rate (contrary to 0.86 without preliminary classification). Similar results have been obtained
for different viewing and environmental conditions (0.96 and 0.94 for sunny and cloudy weather respectively).
Recognition time (without low-level processing procedures) varies from 0.2 up to 0.7 seconds per image on a
standard Pentium.III PC. The non-identified signs (n = 5) are either of low resolution (taken from very far
distance, more than 60 m) or have a complex disturbing background. Examples of recognised road signs
are shown in Fig. 6B. Fig. 6C demonstrates that a traffic sign with two kinds of distortions (shielding about
35% with perspective disturbance about 10�) is not recognized.

6. Conclusion

Colour and shape features extracted using vision models can perform accurate recognition for traffic signs
located at a reasonable distance for still images under various viewing conditions. This approach shows a good
performance for a wide variety of traffic signs of different colours, forms, and informative content. The use of the
CIECAM97 colour vision model allows the segmentation of the majority of traffic signs from the rest of the
scenes. The results on FOSTS indicate that a preliminary separation of traffic signs by shape for each colour
(for example, rectangle versus circle for blue traffic sings or triangle versus ring/circle for red ones) can accelerate
sign identification. In addition, experimental results demonstrate the importance of sensor fixation points chosen
while viewing trajectory formation.

7. Discussion

The algorithms of the FOSTS model provide essential increase of the recognition rate as compared to the
former model versions [23,24] (0.95 versus 0.80 and 0.87). It is interestingly noticed, that recognition rate
obtained by the FOSTS are similar to that for the human operator in the same real world road conditions
(0.96). Apparently, advanced task-oriented modifications of the space-variant sensor, including increase of



the sensor size, classification according to colour and shape, determination of context in the vicinity of each
sensor node, setting the sensor in the sign centre, etc., allow to receive a detailed feature description for the
most informative sign fragments, which results in a higher accuracy of recognition. Furthermore, this
description is stable to local image disturbances in a certain range. Overall, the described model-based
approach provides an accurate identification of traffic signs located at a moderate distance (up to 60 m)
under various viewing conditions.

The invariant recognition to various image transformations in the FOSTS is provided by several model
properties and procedures:
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