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Abstract. In the computer vision field, both approaches of SIFT and SURF are 

prevalent in the extraction of scale-invariant points and have demonstrated a 

number of advantages. However, when they are applied to medical images with 

relevant poor contrast between target structures and surrounding regions, these 

approaches lack the ability to distinguish salient features. Therefore, this re-

search proposes a different approach by extracting feature points using the 

emerging method of KAZE. As such, to categorise a collection of video images 

of echocardiograms, KAZE feature points, coupled with three state of the art 

representation methods, are detailed in this paper, which includes the bag of 

words (BOW), sparse coding, and Fisher vector (FV).  In comparison with the 

SIFT feature represented using Sparse coding approach that gives 72% overall 

performance on the classification of eight viewpoints, KAZE feature integrated 

with either BOW, or sparse coding or FV improves the performance significant-

ly with the accuracy being 81.09%,  78.85% and 80.8% respectively. When it 

comes to only three primary view locations, 97.44% accuracy can be achieved 

when employing the approach of KAZE whereas only 90% accuracy is realised 

while applying SIFT features.  

Keywords: Classification of Echocardiogram Videos, KAZE, 3D SIFT, SURF, 

Sparse Coding, SVM, bag of words, Fisher Vector. 

1 Introduction 

Heart is one of the most complicated motional organs. In order to view the inside 

structure of the 4D (with time as 4
th

 dimension) working heart, special imaging 

equipment has to be employed. In cardiology, echocardiogram (ECG), which can be 

taken from many different angles, remains an important diagnostic tool and relies on 

ultrasonic techniques to generate both single image and image sequences of the heart, 

providing cardiac structures and their movements as well as detailed anatomical and 

functional information of the heart. In order to capture different anatomical sections 
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of a 3D active heart, eight standard views are usually taken from an ultrasound trans-

ducer at the three primary positions, which are Apical Angles (AA) (location 1 with 4 

view angles), Parasternal Long Axis(PLA) (location 2 with 1 view angle) and Paras-

ternal Short Axis (PSA) (location 3 with 3 view angles) respectively. Example images 

of these eight views of the 3 primary locations can be seen in Figure 1. In this way, 

the major anatomical structures such as left ventricle can then be manually delineated 

and measured from different view of images for the subsequent analysis of the func-

tions of the heart [1, 2], leading to timely diagnosis and treatment. Hence, the recogni-

tion of echocardiogram viewpoints constitutes the first and essential step for echocar-

diogram diagnosis.   

  

(a) A2C 

(Apical 2 Chamber) 

(b) A3C 

(Apical 3 Chamber) 

(c) A4C 

(Apical 4 Chamber) 

(d) A5C 

(Apical 5 Chamber) 

(e) PLA 

(Parasternal  Long 

Axis) 

(f) PSAA 

(Parasternal Short 

Axis of Aorta) 

(g) PSAP 

(Parasternal Short 

Axis of Papillary) 

(h) PSAM 

(Parasternal Short 

Axis of Mitral) 

 

 

    In order to identify cardiac structures from ECG images in an unsupervised fashion, 

a number of progresses have been made with regard to the classification of echocardi-

ogram viewpoints as described in [3-5]. The challenge here is the presentation of 

cardiac features due to the non-rigid characteristics and complicated motion of the 

heart as well as relatively low quality of ultrasonic images.  

   Hence, this paper, from an application point of view, employs the approach of 

KAZE to detect and represent features of ECG images, leading to better classification 

results. At present, the most popular algorithms for feature detection and description 

concentrate on the Scale Invariant Feature Transform (SIFT) [6], the Speeded Up 

Robust Features (SURF) [7], and several improved approaches based on either SIFT 

Fig. 1. Eight views of echocaridogram videos 



 

 

or SURF, such as PCA-SIFT[8], ASIFT[9]  and M-SURF[10] . On the one hand, both 

SIFT and SURF rely on the use of the Gaussian scale space and sets of Gaussian de-

rivatives as smoothing kernels for scale space analysis. On the other, however both of 

them can smooth details and noises on the same degree without the consideration of 

the boundaries of objects, blurring the edges and details, to some extent. In order to 

retain the boundary and details of cardiac structures as well as to reduce noises, more 

recently, KAZE features [11] have been developed by detecting and describing image 

features in a nonlinear scale space through the application of nonlinear diffusion fil-

ters. The significant difference between SIFT, SURF and KAZE is the choice of scale 

space. The former two apply linear diffusion in a Gaussian scale space by way of 

approximation of Gaussian derivatives to detect features, whilst KAZE focuses on the 

use of nonlinear diffusion filtering [12-14]. Since the cardiac movements are of non-

linear patterns with relatively low quality of contrast, it is appropriate to concern non-

linear diffusion approaches to retain as many feature points and as little irrelevant 

regions as possible.  

    Figure 2 illustrates the examples with feature points extracted using three of SIFT, 

SURF and KAZE approaches. As evidenced in Figure 2 (b), SIFT feature points ap-

pear to spread the entire image especially in the non-structural areas, failing to high-

light the structure of cardiac chambers, whereas SURF (Figure 2(c)) reduces points to 

a certain degree in the region of homogeneous areas significantly. On the other hand, 

comparing with SURF, KAZE (Figure 2(d)) improves the effect of noise reduction as 

SURF has achieved, and makes the cardiac chamber structure more outstanding, 

which is what is needed in this study. 

 

    

(a) (b) (c) (d) 

Fig. 2. The illustration of approaches of SIFT, SURF and KAZE on the extraction of feature 

points. The first one (a) is original image of echocardiogram. The other three images are SIFT 

feature points (b), SURF feature points (c) and KAZE feature points (d). 

 

   Therefore, in this study, the classification of a collection of echocardiogram video 

images according to their viewpoints is conducted using KAZE features, which is 

then collaborated with three representation techniques. Comparison with SIFT fea-



 

 

tures will also take place. The remaining of this paper is therefore structured as fol-

lowings. Section 2 details the methodology applied in this study, which is followed by 

Section 3 describing the results, whereas the conclusion is summarised in Section 4. 

2 Methodology 

Figure 3 schematically depicts the outline of the work that has been conducted in this 

paper. To classify the collection of video images into eight classes, the following 

procedure takes place, including: 

a) Feature points detection and extraction using KAZE; 

b) Feature point representation using either BOW, Sparse coding  or Fisher 

Vector (FV) ; and finally 

c) Classification using the approach of Supervised Vector Machine (SVM).              



 

 

 

Fig. 3. The outline of proposed work. 

 

To classify the collection of video images into eight classes, the following proce-

dure takes place, including: 

a) Feature points detection and extraction using KAZE; 

b) Feature point representation using either BOW, Sparse coding  or Fisher 

Vector (FV) ; and finally 

c) Classification using the approach of Supervised Vector Machine (SVM).              



 

 

 

2.1 KAZE feature detection and description 

In this paper, the KAZE algorithm is extended to cardiac ultrasound images. It starts 

by building variable conductance diffusion [12, 15] upon a given input frame of echo-

cardiograms. In doing so, two different formulations for the conductivity function g

are initiated as given in Eqs. (1) and (2).                           
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where the contrast parameter k can be computed as being 70% of the gradient ( L  ) 

histogram of a smoothed version of the original image. On the other hand, in [15], 

another conductivity function was proposed as
3g in Eq. (3). 
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The function 
1g  promotes high-contrast edges, and 

3g  facilitates region smooth 

and retains edge details, whereas 
2g  promotes wider regions over smaller ones. In 

comparison with these three functions through the analysis of the characteristics of 

echocardiogram visually, the function 
2g  works better in eliminating noise effects in 

several small scales and in reserving wide cardiac structure regions. The experimental 

results shown in Figure 4 sopport the above conclusion.  

   
(a) (b) (c) 

Fig.4. Feature points of the cardiac structure under the action of different conductivity func-

tions. From left to right are detecting results generated by
1g (a), 

2g (b) and
3g (c) respective-

ly. The left red region is Left Ventricle (LV) and the right yellow one is Left Atrium (LA).  

 

    With the application of 
2g (b), feature points appear to be preserved better on sali-

ent structures, whereas noises in smaller regions such as the noise points in the LV 

and LA areas are reduced when comparing with other two results. Then the additive 

 

 

 

 



 

 

operator splitting (AOS) scheme [13] is utilised to build the nonlinear scale space as 

formulated in Eq. (4): 
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where 𝐴𝑙  is a matrix that encodes the image conductivities for each dimension by 

applying conductivity function (e.g., 𝑔2).  In addition, it refers to the evolution time 

transformed by the scale space ),( soi  shown in Eq. (5): 
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In Eq. (5), the starting scale level is 0  and N  is the total number of filtered im-

ages. The scale space ),( soi  including a series of octaves (O ) and sub-levels ( S ), 

similar to the ones being processed in applying SIFT, is transformed into nonlinear 

scale space indexed as evolution time it . With all these needed information, it is 

therefore straightforward to build nonlinear scale space using the AOS scheme. 

With regard to detection of the points of interest, the process is again similar to 

that when applying the SIFT. By computing the response of scale-normalized deter-

minant of the Hessian matrix at multiple scale levels [11], at different scale level i , 

the search for the maxima takes place in both scale and spatial locations. As a result, 

the position of a feature point (e.g. the pink points shown in Fig.3) can be estimated 

by using the method of grouping interesting points similar to the one detailed in [16].  

In addition, the computation of the main orientation of a feature point is carried out 

in order to obtain a rotation invariant descriptor by adopting the process similar to the 

one that is applied in SURF [10]. That is by applying a sliding orientation window of 

size /3 within a circular neighbourhood of radius of 6𝑠 centred at the point of interest 

(PoI), where 𝑠 is the scale as represented in Eq. (5), the first order derivative respons-

es of Gaussian function in both x- and y-directions are computed. The two summed 

responses along each direction within each sliding window then yield a location ori-

entation vector. The longest such vector within the circular neighbourhood is then 

defined to be the orientation of the concerned PoI.  

2.2 Echocardiogram video representation – temporal-spatial max pooling 



 

 

In this paper, three different methods are evaluated to represent KAZE features, 

which contain Bag of Word (BOW), Spatial Sparse Coding, and Fisher Vector respec-

tively. 

Fisher vector (FV) encoding [17] remains an image representation obtained by 

pooling local image features, and has been shown to provide better accuracy using 

efficient linear kernels for classifications. For example, it has shown to be successful-

ly applied for event detection [18], and consistently to improve the performance of 

image classification and image retrieval tasks [19].  

Let },....2,1,{ TtxX t   be the set of D-dimensional local descriptors ex-

tracted from a set of KAZE descriptors where 𝑇 refers to the number of feature points. 

In the process of FV encoding, a Gaussian Mixture Model (GMM) is applied to gen-

erate FV representations (𝐹̅) that can be described using the following two parts given 

in Eqs. (7) and (8) respectively [17, 23]. 
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where )(it  indicates the soft assignment descriptor tx  to 𝑖𝑡ℎ Gaussian, and X

iU ,
 and

X

iV ,
  are the 2-dimensional gradient with respect to i  and i respectively. The final 

representation is given by the concatenation of the two parts following the result of l2-

normalization [20].  

    After the extraction of KAZE features, we apply two approaches to represent each 

video clip, which are spatial Bag of Words (BoW) and spatial sparse coding.  

 

 

 

 

 

 

 

 

  

  

 

Divided into 3 space-

time sub-volumes (up, 
middle and bottom) 
 

An echocardiogram 

video sequence Divided into 6 

space-time sub-volumes  

Divided into 2 space-time 

sub-volumes (left and right) 

Fig. 5. Space-time max pooling 



 

 

 

With regard to spatial BOW, k-means method is employed to generate a visual 

dictionary or codebook with 1024 feature unit elements or ‘words’.  

In order to describe the local visual features, a video is divided into a number of 

sub-volumes as illustrated in Figure 5 [21].  According to the characteristics of our 

dataset that lacks heartbeat of ECG data, the alignment with time scale is unavailable. 

As a direct result, even a group of videos belong to the same view and might have 

been captured from the similar locations and angles, they can be recorded at different 

starting times of a cardiac circle,  implying two interest points from two different 

videos being not comparable while in the time domain. Therefore, the grouping of 

these videos is only fulfilled in the space domain (along horizontal and vertical direc-

tion), instead of time domain (from front to back).  In this study, a video clip is divid-

ed into 3 sub-volumes in the geometric space of space-time (Up, Middle and Bottom) 

with equal distance along vertical direction and 2 sub-volumes (Left and right) along 

a vertical centre plane respectively as shown in the middle graph of Figure 5, and then 

is further divided into 6 sub-volumes as shown in the right of Figure 5.  In total, 12 

(=1+3+2+6) sub-volumes are created in this way to reflect different scales. 

On the other hand, with regard to spatial sparse coding, we use K-SVD to generate 

a dictionary with 1024 bases and each KAZE feature is coded using the approach of 

Orthogonal Matching Pursuit (OMP) [22]. Similar to the spatial division presented in 

Figure 5, spatial pooling is performed by the employment of maximum pooling tech-

nique.                          

2.3        Echocardiogram video classification  --- Linear SVMs 

Following the pooling of sub-volume features, the classification of video clips is per-

formed using a multiclass SVM with a linear kernel as formulated in Eq. (9).  

         

   𝑘(𝐹̅𝑖, 𝐹̅𝑗) = 𝐹̅𝑖
𝑇𝐹̅𝑗                                                   (9) 

 

Where
jF is the feature representation of video j.  With regard to binary classification, 

an SVM aims to learn a decision function based on the training dataset as defined in 

Eq. (10). 
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    In order to obtain an extension to a multi-class SVM, the trained videos are repre-

sented as   n

iii lF
1

,


 , where  Lli ...2,1  denotes the class label of trained video i. One-

against-all strategy is applied to train the total number of 𝐿 binary classifiers. 



 

 

3 Experimental results 

3.1 Dataset 

In this paper, a total of 312 echocardiogram videos are collected from 72 different 

patients (containing 14 wall motion abnormalities and 58 normal cases) in the First 

Hospital of Tsinghua University, China. All videos are captured from GE Vivid 7 or 

E9 and are stored in DICOM (Digital Imaging and Communications in Medicine) 

format with the size of 341 × 415 pixel × 26 frame. Each clip belongs to one of the 

eight different views (shown in Figure 1), as detailed in Table 1. In our experiment, 

due to the small sample size, we set and conduct training and testing set in a leave-

one-out fashion, i.e. when testing a video clip, the entire dataset exclude test video is 

used for SVM training. 

Table 1. Dataset 

View A2C A3C A4C A5C PLA PSAA PSAP PSAM Total 

Videos 50 37 45 14 70 51 26 19 312 

3.2 Experiment and Results 

In spatial BOW and Sparse Coding, the dimensions of a video representation are 

12x1024 = 12288. In FV representation, 50,000 feature points are randomly selected 

to learn the GMM model of 𝑖𝑡ℎ Gaussian. In keeping with the representation number 

of the other two methods (BOW and Sparse coding), K  is set to be 96, which results 

in the size of FV being 12288 (=2*64*96). As a result, the classification result (accu-

racy and error rates) for the eight views are visualized in Figure 6 for KAZE features 

represented using FV, BOW and Sparse Coding respectively, whereas Table 2 pre-

sents a result in Confusion matrix for KAZE feature with BoW. 

                                                          

 

        

                                                                  

 

 

 

 

Fig. 6. The accuracy (left) and error rates (right) with FV, BOW and Sparse Coding representa-

tions. 
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Table 2. The results from KAZE features with BoW representations (AR=Accuracy Rate). 

    Classification Results AR 

Ground 

Truth 

  A2C A3C A4C A5C PLA PSAM PSAA PSAP 

A2C 43 1 3 1 0 1 1 0 0.86 

A3C 6 29 1 0 0 0 1 0 0.783 

A4C 5 0 39 1 0 0 0 0 0.866 

A5C 3 0 10 1 0 0 0 0 0.071 

 
 

 

 
 

 

 
 

Overall 

PLA 0 0 0 0 70 0 0 0 1 

PSAM 1 0 0 0 0 6 0 12 0.315 

PSAA 0 0 1 0 2 0 48 0 0.941 

PSAP 2 0 0 0 1 6 0 17 0.653 

         81.09% 

 

    The values in the Figure 6 (a) represents the Accuracy Rates (AR) for each class, 

and Figure 6 (b) the Error Rates (ER). In summary, the average AR(AAR) for all 

classes is 80.8% (=252/312), 81.9% and 78.85% for the KAZE feature with represen-

tations of FV, BOW and Sparse coding respectively with the corresponding ER (AER) 

being 19.2%, 18.1%, and 21.15% respectively. In [21], where SIFT with Sparse Cod-

ing is applied 72% AAR is achieved with 28% ER rate, implicating the approach with 

KAZE feature points outperforms the SIFT feature point for the classification of 

echocardiography. Although in [21], only 219 datasets were employed instead of 312, 

the evaluation results using the same datasets of 312 have shown similar classification 

outcomes. 

    Another way to evaluate these results is to focus on only three primary view loca-

tions taken from Apical angles (including A2C, A3C, A4C and A5C, with a total of 

146 data), Parasternal Long Axis (PLA, with the data of 70) and Parasternal Short 

Axis (including PSAA, PSAP and PSAM, with 96 data in total). The classification 

result is shown in Table 3 for the approach KAZE + BOW. The AAR for the three 

classes is 97.44%, while the AER is 2.56%, suggesting the significant benefit of the 

application of proposed KAZE feature points. In [21], 90% precision is obtained for 

the three classes while employing SIFT features. 



 

 

Table 3. Confusion matrix for 3 primary view locations 

 

AA 

(Apical An-

gle) 

PLA 

(Parasternal 

Long Axis) 

PSA 

(Parasternal 

Short Axis) 

Accuracy Rate 

(AR) 

Ground 

Truth 

AA 144 0 2 98.63% 

PLA 0 70 0 100% 

PSA 4 2 90 93.75% 

Error Rate (ER) 3% 3% 2% 97.44%(AAR)/  

2.56(AER) 

4 Conclusion and discussion 

According to the diagrams shown in Figure 6, most of the errors occur within the 

classes of the views of A5C and PSAM. This might be in part due to the small train-

ing data sample sizes in these two groups as well as the reminiscent visual structure 

occurred in the echocardiogram views, as displayed in Figure 7 where the views are 

taken from Apical angles (4 views) and Parasternal Short Axis (5 views). In contrast, 

the unique view of PLA gives the best performance with near 100% accuracy rate.         

In summary, KAZE approach appears to outperform SIFT when it is applied to the 

task of classification on a collection of echocardiograms.  Due to the relatively small 

sample sizes, in particular for the categories of A5C (n=14) and PSAM (n=19), more 

data will be included in the future. In addition, at present, KAZE is only applied on 

2D frames. A 3D version of KAZE is currently under investigation and is expected to 

give better performance in the near future. 
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Fig. 7. Similar structures in Echocardiogram views. Left two: A4C and A5C; Right two: 

PSAP and PSAM 
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