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ABSTRACT
Convolutional Neural Networks (CNNs) have been the state-of-the-
art techniques applied in the field of medical imaging for numerous
image processing tasks. Recently, vision transformer networks are
emerging as another technique, complementing current CNNs in
the medical field providing on-par performance while also having
a number of unique characteristics that may be useful for medical
image processing. While CNNs have been predominantly applied
to artefact detection and classification in endoscopic images, ViT
has been sparsely applied in this area. Additionally, both CNN and
ViT have been sparingly applied to colour misalignment artefact
classification. In this work, we, therefore, explore the application of
Vision Transformer (ViT) in the classification of artefacts in endo-
scopic images of the gastrointestinal tract organs. Furthermore, the
performance of ViT is compared to that of CNN in the classification
of colour misalignment artefacts. Our customised ViT model, based
on DeiT (Data-efficient image Transformers), has obtained an accu-
racy of 96.33% as compared to the CNN based Inceptionv3 model
with an accuracy of 78.67% and InceptionResNetv2 with 76.67%.
The results demonstrate that when pretrained on ImageNet, ViT of-
fer better performance than CNNs in colour misalignment artefact
classification. This is due to the ability of ViT to better depict the
relationship between image pixels through self-attention weights.
Moreover, the built-in self-attention mechanism offers fresh insight
into the decision-making processes of the model.

CCS CONCEPTS
• Computing methodologies → Object recognition.
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1 INTRODUCTION
Esophageal cancer ranked seventh in terms of cancer incidence
rate and sixth in overall cancer mortality rate worldwide in 2020
[17]. Endoscopy is a commonly performed imaging procedure for
early screening of diseases in gastrointestinal tract organs. How-
ever, artefacts are caused by the rapid movement of the endoscope,
the unique characteristics and constrained environment of the or-
gans under examination. While there are various artefacts such as
saturation, specularity, debris, bubbles and contrast [1], one promi-
nent artefact in endoscopic images is colour misalignment. During
endoscopy, the endoscopic camera takes pictures sequentially in
red, blue and green, then these three channels are combined to form
a colourful picture. Since the esophageal food pipe is of relatively
small size, due to the fast movement of the camera, these three
channel pictures may not be captured from the same spot causing
non-realistic appearance, which is the colour misalignment artefact
as illustrated in Figure 1 [6].

Figure 1: Colour misalignment (a - White Light Endoscopy,
b- Narrow Band Imaging [6]
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These artefacts hinder the detection of abnormal variations in
the tract organs. These abnormal regions might eventually lead to
development of cancers if undetected and untreated as they are
mixed with objects of interests. In-depth knowledge, experience and
training are required by endoscopists in order to identify the subtle
changes and abnormalities in endoscopic images. There have been
significant advances in imaging technology in the recent decades
such as image-enhanced endoscopy and magnifying endoscopy to
facilitate early detection of cancers [23] but the presence of artefacts
in endoscopic images has often caused misdiagnosis. The rate of
undetected upper gastrointestinal cancers over the past 3 years was
high (25%) and the main reason was attributed to endoscopic errors
[11].

With the enhancements in machine learning and deep learning,
novel techniques using Convolution Neural Networks (CNNs) have
been used in the medical field for the detection, segmentation and
classification of objects in medical images such as radiographs,
Computed Tomography (CT), Magnetic Resonance Imaging (MRI)
and endoscopic images [1]. Deep learning makes use of artificial
neural networks to perform complicated computations on large
amount of data (Website: Simplilearn). CNN minimises the need
for manual feature extraction for image classification. Instead, the
features are learned while the network processes the images [3].
CNN transforms the representation of data from lower levels into a
more abstract high level using layers to make predictions.

Recently, Vision Transformers (ViTs) are developed and have
achieved state of the art performance in Natural Language Process-
ing. The success of the work achieved by [5] has ignited research
in application of ViTs in image processing. For natural images,
ViT has proved to outperform CNNs in standard computer vision
work such as ImageNet classification, object detection as well as se-
mantic segmentation. In comparison to convolutions, the attention
mechanism at the heart of transformers has a number of significant
advantages: (1) It depicts long-range relationships, (2) it has the
ability to model adaptively using computed self-attention weights
which allows capture of the relationship between tokens, (3) it of-
fers a form of built-in saliency that provides information on what
the model has focused on.

After performing an extensive literature review, it is found that
only few works have been done to apply ViTs to endoscopic images,
particularly to GI tract organs. Moreover, both CNNs and ViTs have
been sparsely applied to the classification of colour misalignment
in GI endoscopic images. In this work, we, therefore, apply both
CNNs and ViTs to GI tract endoscopic images for the classification
of colour misalignment artefacts and investigate their performance.
The objective is to fill in the gap with regards to application of ViT
to endoscopic images and comparison of the performance of ViT
and CNN in the classification of endoscopic images corrupted with
colour misalignment artefact. This will help to instigate further
research in the application of ViT to endoscopic images, leading
to investigation on the enhancement of ViT and CNN in the clas-
sification of colour misalignment artefacts as well as to artefact
detection and classification in endoscopic images in general.

In the next section, we will, therefore, describe the work done
so far using CNN and ViT. Then, the CNN and ViT models applied
for the classification of colour misalignment are detailed. Finally,

the results achieved are described and reviewed before proceeding
with the conclusion.

2 LITERATURE REVIEW
Several works based on CNN have been undertaken for artefact
detection and classification in endoscopic images. In [6], state of
art deep learning techniques are investigated to detect and classify
the precancerous stages of squamous cell carcinoma (SCC) can-
cer in real time during endoscopy. Image sequences corrupted by
colour misalignment artefact including blur are eliminated first.
Afterwards, the system allows the classification of the remaining
esophageal video images into three classes of SCC: ‘suspicious’,
‘high grade’, and ‘cancer’. Conventional CNN, AlexNet is applied
for the classification of colour misalignment. For detection and
classification of images into the 3 SCC categories, Mask R-CNN
and YOLOv3 are used. An accuracy of 96% is obtained for the arte-
fact classification while for detection and classification of SCC, the
accuracy results are 85% by YOLOV3 and 77% by Mask-R-CNN.

Multi-class artefact detection was performed by [24] for seven
different artefact classes in endoscopic images including instrument,
specularity, artefact, blur, contrast, bubbles, and saturation from
the EAD 2019 dataset. An improved Cascade R-CNN model in
combination with feature pyramid networks (FPN) is applied. The
Cascade R-CNN achieves a good balance between mAP and IoU
with a mAP of 0.3235 and IoU of 0.4172. [12] describes the deep
learning architectures used in the EndoCV2020 challenge for the
detection and segmentation of endoscopic artefacts and diseases in
endoscopic images. A state-of-the-art detector, EfficientDet with
different EfficientNet backbones and Focal length is trained and
optimized for the detection task. The ensemble method provided
the best detection performance with dScore of 0.44, a mean mAP
of 0.36 and an IoU of 0.52.

[13] focuses on the detection of bounding boxes for seven classes
of artefacts in the EAD 2019 dataset using Focal loss and RetinaNet
architecture with Resnet-152 backbone. A 5-fold cross validation
strategy has been used to optimize the parameters of the network.
A mAP of 0.2719 has been obtained on 195 cases over 7 artefact
classes. The IoU is 0.3456 for the detection task over the classes.

Transformers was introduced as a novel attention-driven tech-
nique for machine translation by [21]. [5] has proposed ViTs, based
on the standard Transformer model of [21], by cascading a number
of transformer layers to depict the global context of input images.
Basically, an image is interpreted as a sequence of patches processed
by a standard transformer encoder similar to the one used in NLP
[15]. It has been concluded that when pre-trained on a wide set
of data and transferred to medium-sized or smaller image classi-
fication tasks, ViT achieves quite promising results compared to
CNN while consuming less computer resources during training
[5]. The success of the ViT model has fueled the use of ViTs in the
field of medical imaging, with applications in classification, object
detection, and segmentation [15].

The authors in [10] investigated whether ViT models can re-
place CNNs in the field of medical image processing. In the process,
several tests were carried out using 3 datasets: APTOS 2019 con-
sisting of diabetic retinopathy images for classifying the latter into
5 disease severity categories, ISIC 2019 consisting of dermoscopic
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images depicting skin lesions for their classification into 9 classes of
skin diseases and CBIS-DDSM consisting of mammography images
where the task is the detection of masses in the images. The work
concluded that when training is done from scratch on limited data,
CNNs perform better than ViT due to the fact that the latter lacks
inductive bias. When pre-trained on Imagenet, ViT performed com-
parably to CNNs with limited data. When transfer learning is used,
both ViT and CNNs perform better. Most importantly, in case self-
supervised training is applied followed by supervised fine-tuning,
ViTs outperform CNNs in the field of medical diagnosis where data
is limited. ResNet50 was used as the CNN based model and DeiT-S
as the ViT while DINO was used as the self-supervised learning
technique [10].

For the classification of ultrasound images with breast cancer
into normal, malignant and benign, [8] evaluated the performance
of ViT model against CNN. CNNmodels used are ResNet50, VGG16,
Inception, and NASNET. Amongst the CNN based models, Rest-
Net50 model achieved the best performance with an accuracy of
85.3% and Area Under Curve (AUC) of 0.95. ViT model using trans-
fer learning attained an accuracy of 86.7% and AUC of 0.95. The
results show the higher performance of the ViT model compared to
that of CNN in terms of accuracy but for AUC both achieved similar
results. ViTs has been used in the automated image classification
in the context of Covid-19 diagnosis. [14] has used Point-of-Care
Transformer (POCFormer) to classify Covid-19 from ultrasound
images of the lungs and obtained above 91% average accuracy.
POCFormer is a lightweight ViT which reduces the complexity of
self-attention in terms of time and space from quadratic to linear.
Following the analysis of previous work done, we find that CNN
has been the main state of the art technique applied to endoscopic
images and particularly to artefact detection. However, there is
limited work done for the detection of colour misalignment arte-
fact in endoscopic images using CNN. On the other hand, we find
that there is a research gap in the application of ViT to endoscopic
images. Therefore, we explore the application of both CNN and
ViT in colour misalignment classification in endoscopic images and
compare the performance.

3 METHODS
This section describes the experiment carried out to analyse the
performance of ViT and CNN in the classification of colour mis-
alignment artefact in endoscopic images.

3.1 Dataset
The data used in this study has been built using the dataset which
has been released as part of EndoscopyArtefact Detection (EAD2019)
IEEE ISBI’19 challenge [2]. It consists of 7 classes of artefacts namely
saturations, motion blur, specularity, bubbles, imaging artefacts,
contrast and instrument. The images with colour misalignment
artefacts have been chosen manually. Of note, colour misalignment
artefacts occur due to motion blur. Moreover, some videos con-
taining colour misalignment artefacts have been collected from a
previous study for SCC detection as detailed in [7]. The images were
extracted from the videos using VideoProc Converter application
[22]. In all, the number of images amount to 674 with 200 contain-
ing colour misalignment and 474 consisting of remaining artefacts.

Hence, the dataset consists of 2 classes, one with colour misalign-
ment and the second one with images of remaining artefacts. Part
of the dataset is depicted in Figure 2.

Figure 2: Part of the dataset (a - colour misalignment, b -
other artefacts)

For both models implemented, one based on ViT and the other
on a CNN architecture, the images have been divided into training,
validation and test dataset in the ratio of 7, 2 and 1 respectively.

3.2 Model development
3.2.1 ViT based model. Figure 3 shows the overall architecture of
the method implemented for classification of colour misalignment
artefact using the customised ViT model

Figure 3: Model based on VIT

The images used for training have been augmented as part of the
pre-processing step as shown in Figure 3 in order to have a better
dataset without changing the meaning of the original images. The
images in the validation and test dataset have been cropped and
normalised.

The method implemented is based on the DeiT model - DeiT-
tiny-patch16-224 [20] depicted in Figure 4.

Figure 4: DeIT architecture

DeiT is based on the ViT model developed by [5] which consider
input images as a sequence of input tokens. The input images, which
are of fixed sized and in RGB, are decomposed into N patches of a
fixed size of 16 x 16 pixels with N = 14 X 14. Each patch is rearranged
into a linear layer which conserves the overall dimension of the
image (that is 3 X 16 X16). Positional information is embedded
for the relative positions of the patches. These are incorporated
before the first transformer block which are then fed to the other
transformer blocks. A Feed Forward network is added on top of the
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Multi-head self-attention layer (MSA) to build a full transformer
block. The FFN consists of two linear layers which are separated
by a GeLU activation method. MSA and FFN operate as residual
layers due to the skip connections and a layer normalization. A class
vector, which is a trainable vector, is appended to the patch tokens
just before the first layer. The former goes through the transformer
layers and is afterwards projected together with a linear layer in
order to predict the class. A new token which is the distillation
token is added to the patches and class tokens. It interacts using
self-attention with the other embeddings and the network outputs it
after the final layer. The purpose of the distillation token is to allow
the model to learn from the output of the teacher while bringing
complementary information to the class embeddings [20].

The DeiT was pre-trained on ImageNet database and transfer
learning used to apply the algorithm to our customized dataset.
LabelSmoothingCrossEntropy is used as the loss function while
Adam optimizer with a learning rate of 0.001 has been used for
optimisation.

3.2.2 CNN based model. The architecture of the model imple-
mented based on CNN is as depicted in Figure 5. The dataset has
been rescaled, horizontally flipped as well as sheared and zoomed as
part of pre-processing. Four state of the art pre-trained CNNmodels
have been used for experimentation. These are VGG16, ResNet50,
Inceptionv3 and InceptionResNetV2.

Figure 5: Architecture of CNN based model

VGG16 is a deep CNN which was introduced by [16]. It is made
up of 16 layers with 13 convolutional layers and 3 fully connected
layers. It also includes a final softmax classifier. 5 out of the 13 con-
volutional layers are max-pooling layers. ResNet50 was introduced
by [9]. It is a CNN consisting of 50 layers with 48 convolutional lay-
ers, a maxpool layer and an average pool layer. ResNet-50 is formed
by stacking residual blocks to form the network [4]. Inceptionv3
is a deep learning model which is based on the CNN developed in
2015 by a team at Google. It is an advanced version of the based
model Inceptionv1 (GoogleNet). The network architecture is made
up of 42 layers and has a better error rate than its predecessors. To
achieve this, larger convolutions are factorized into smaller ones
while making use of asymmetric convolutions. Auxiliary classifiers
are used as regulariser and grid size is reduced efficiently [19]. In-
ceptionResNetV2 is proposed by [18]. It is based on the Inception
architecture. The stem module consists of two 3x3 convolutional
layers followed by a max pooling layer while the Inception blocks
make use of residual connections to overcome the degradation prob-
lem due to the deep structures. Reduction blocks are used to reduce

the spatial dimensions. Overall the network consists of 164 layers
and helps to reduce the training time.

In our implementation, categorical entropy is used as the loss
function and similar to the ViT model, Adam algorithmwith a learn-
ing rate of 0.001 is used as the optimization method. The dataset
has been trained using each CNN model and their performance on
the test dataset evaluated.

4 RESULTS AND DISCUSSION
Several experiments were carried out in order to determine the
best classification model under different hyperparameters. The
algorithms for both the ViT model and the CNNmodels were run at
25 and 50 epochs. For each number of epochs, the model was run 5
times and the average values of accuracy, precision and recall were
calculated. Out of the 4 CNN models, the best validation accuracy
of 92.79% was obtained at 50 epochs by InceptionResNetv2 followed
by Inceptionv3 with a validation accuracy of 91.29%, VGG16 with
79.48% and ResNet50 with 76.12%. For the ViT implementation, the
best validation accuracy of 96.27% was also obtained at 50 epochs. It
can be concluded that better results are achieved when the number
of epochs increases both for ViT and CNNs. Moreover, ViT provides
better validation accuracy than CNN based models. These models
were then run on the test data. We find that the ViT model based on
the DeiT architecture (DeiT) achieved the best performance with an
overall accuracy of 96.33% as compared to the Inceptionv3 with an
accuracy of 78.67%, InceptionResNetv2 with 76.67%, VGG16 with
53.19% and finally ResNet50 with 51%. Additionally, the ViT model
has the best precision and recall values on test data as compared
to the CNN models. This could be explained with the ability of
ViT to better depict the relationship between image pixels through
self-attention weights. Figure 6. provides a graphical view of the
accuracy, precision and recall results obtained with the different
models. Overall ViT performs better than the CNN models when
run on test data.

Figure 6: Performance of ViT against CNN

The confusion matrix obtained when the best ViT model was
run on test data is as displayed in Figure 7

The matrix shows that the number of false positives and false
negatives are quite low with the ViT model. Next, Figure 8 provides
a visualization of the attention model when applied to endoscopic
images with colour misalignment artefacts and those with the rest
of artefacts.
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Figure 7: Confusion matrix with ViT model (colour – colour
misalignment, normal – remaining artefacts)

Figure 8: Visualizing attention in Vision Transformers

5 CONCLUSION
CNN based architectures have been the de facto techniques ap-
plied in the medical field for endoscopic image classification, object
detection and segmentation. The application of ViT in medical
imaging is emerging and has scope for further development. The
main objective of this paper is to evaluate whether ViT can be
applied efficiently to classification of colour misalignment artefacts
in endoscopic images as compared to CNN based models. It can be
concluded that ViT achieves better performance in terms of accu-
racy, precision and recall than CNN on the classification of colour
misalignment artefacts from other artefacts namely saturations,
specularity, bubbles, imaging artefacts, contrast and instrument in
endoscopic images. Moreover, this study demonstrates that when
applied to endoscopic images, ViT provides better performance
than CNN based models. Furthermore, although datasets can be
limited in size in the medical field, it is found that when pre-training
is performed on large datasets and transfer learning applied, ViT
can provide significant and promising results.
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