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Abstract—In view of the shortcomings that particle swarm 

optimization is easy to fall into local optima and difficult to solve 
complex problems, the combination of Gaussian distribution and 
Cauchy distribution was used in the position updating formula to 
improve the particle diversity, and Cauchy perturbation was 
added to the swarm optimal position to further improve its global 
searching ability. In the experiment, ten benchmark test functions 
were used to test two proposed modifications in the study, and 
compared with the four classical particle swarm algorithms, the 
results show that the proposed algorithm had high solving 
accuracy and good solving stability, especially in solving complex 
functions. The proposed algorithm was utilized in spectral 
reconstruction based on wideband multi-illuminant imaging. The 
experimental results confirm that comparing with the classical 
PSO algorithm, the proposed algorithm is good at searching for 
global optimum especially for complicated engineering problems. 

Keywords—particle swarm optimization, bare bones particle 
swarm optimization, swarm intelligence, Cauchy distribution, 
Cauchy perturbation, spectral reconstruction 

I. INTRODUCTION  
With the development of science and technology and the 

advancement of computer technology, now the society has 
entered the era of big data, there are a large number of problems 
with higher dimensions, geometric growth of data, stronger 
parameter coupling and other characteristics. In addition, 
optimization problems are also widely occurring in electrical, 
communications, machinery, economy, finance and other fields, 
as long as decision-making is needed, there will be optimization 
problems. In order to adapt to the rapid development of society 
and efficiently solve more complex problems, following 
bionics, researchers once again learned from nature, resulting in 
the birth of swarm intelligence algorithms. For example, several 
classical swarm intelligence algorithms such as particle swarm 

algorithm inspired by bird flock foraging, cultural algorithm 
encouraged according to human social and cultural evolution 
model, artificial fish swarm algorithm generated according to 
the living habits of fish groups, and ant colony algorithm 
inspired by ant colony foraging. Among them, Particle Swarm 
Optimization (PSO) is one of the widely studied swarm 
intelligence algorithms, based on Reynolds [1] and Heppner et 
al. [2] analysis model of bird flock flight behavior, Kennedy and 
Eberhart [3] formally proposed the PSO algorithm in 1995. 

Since the PSO algorithm has the advantages of concise 
algorithm and simple theoretical structure, there are a large 
number of studies for improving PSO. Shi et al. [4] proposed 
that the inertia-weighted PSO, generally named as Standard 
PSO (SPSO). In consideration of the shortcomings of SPSO 
such as easy premature convergence and low optimization 
accuracy, scholars improved its parameters and the population 
topology. In many SPSO improvement studies, there are some 
widely known methods, such as FIPS (Fully Informed Particle 
Swarm) [5], in which particle updates do not only use the 
optimal particles in their neighborhood, but also use the 
historically optimal weighted average of all members in the 
neighborhood to guide updates. As SPSO improvements 
become more sophisticated, it become harder and harder to 
improve the way particles operated, until in 2003, Kennedy, the 
inventor of PSO, proposed a clearer form of particle swarm 
algorithm: Bare-bones PSO (BBPSO) [6], and to use Gaussian 
distribution to control particle evolution. 

BBPSO is a more concise particle swarm algorithm, in 
which the velocity attribute of particles is removed in evolution, 
and evolution is completed in the form of random distribution. 
BBPSO's simple cooperative probabilistic searching method can 
improve the searching efficiency and accuracy of the algorithm, 
and avoid the complex parameter setting of SPSO, which is 
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more widely used. Therefore, the algorithm improvement, 
analysis and application of BBPSO have always been a hot spot 
in the field of particle swarm studies, such as Sun et al. proposed 
quantum-behaved particle swarm operation (QPSO) [7], and 
Coelho proposed Gaussian quantum particle swarm algorithm 
[8]. Compared with the classical particle swarm algorithm, the 
biggest difference between BBPSO and the classical particle 
swarm algorithm is that the next movement position of the 
particle does not depend on the current particle position, but on 
the current historical optimal position of the particle. 

The improvement of particle swarm optimization essentially 
revolves around two goals: first, to solve the problem that the 
algorithm is prone to premature convergence, so that the 
algorithm has better global exploration ability; The second is to 
improve the searching accuracy of the algorithm in the 
neighborhood, so that the algorithm has better local 
development capabilities. The greater the diversity of the 
particle swarm and the higher the degree of dispersion, the less 
likely the particles are falling into the local optimal solution, and 
the better global exploration capabilities the algorithm has. The 
more concentrated the particle swarm, the more search accurate 
the particles in the current neighborhood, and the better the local 
development ability of the algorithm. However, particle 
diversity is not always as high as possible. If the particle 
diversity is always maintained at a high level, it may cause the 
algorithm not be able to converge. Therefore, the ideal situation 
is to maintain a certain high diversity of particles at the 
beginning of iteration, and rapidly reduce the diversity when 
approaching the region where the global optimal solution is 
located, so that the swarm converges to the global optimal 
solution. 

In order to solve the above problems, the introduction of 
mutation mechanism in population evolution is the most widely 
studied method, which can effectively improve the problem of 
premature convergence and improve the optimization 
efficiency, and its mechanism of action is to force particles to 
leave their current position to achieve the purpose of regulating 
particle diversity. The mutation mechanism was first seen in 
Van Den Bergh's Multi-start PSO (MPSO) [9], which 
reinitializes the particle position after a certain number of 
iterations; Krohling and Mendel [10] generate perturbations 
through Gaussian distribution or Cauchy distribution to help the 
population jump out of the local optimal, but different test 
functions need to set different perturbation amplitudes; 
Blackwell and Majid [11-12] propose two types of BBPSO with 
uniform variation (BBPSO with Jumps, BBJ): BBJ1 and BBJ2, 
both algorithms slow down the loss of population diversity by 
setting the probability so that particles can perturb according to 
a uniform distribution of mutation points, but too much variation 
will affect efficiency, and too little is not conducive to group 
jumping out of the local optimum; Campos et al. [13] use the 
heavy-tailed distribution instead of the Gaussian distribution to 
produce new positions of particles, thereby increasing the 
chance of the algorithm jumping out of local extremes, called 
SMA-BB (BBPSO with Scale Matrix Adaptation). 

The particle updating mechanism in BBPSO has intuitive 
physical significance, can easily adjust the searching scope of 
particle. The modifications based on BBPSO in this study lies in 
two aspects, one is to set the possible distribution position of 

particles in 50% probability to present two random distributions, 
namely Cauchy distribution and Gaussian distribution, adding 
Cauchy distribution is conducive to the diversity of particles, 
making it easier to jump out of the local optimal solution; The 
second is to update the global optimal position of group by 
adding a Cauchy perturbation to search for a better solution 
around the global optimal position. 

II. IMPROVED BBPSO ALGORITHM 
In classical particle swarm algorithm, particle i will converge 

to a point between the historical best and the neighborhood best. 
Inspired by this, Kennedy's original BBPSO form is shown in 
Equation (1): 

𝑥𝑥𝑖𝑖𝑘𝑘+1 = �
𝑁𝑁 ��𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�/2, �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�� 𝑟𝑟 < 0.5
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 𝑟𝑟 ≥ 0.5

 (1) 

where, 𝑁𝑁 ��𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�/2, �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘��  is a 
Gaussian distribution with the mean of �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�/2, 
the standard deviation of �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�, the new position 
𝑥𝑥𝑖𝑖𝑘𝑘+1 is a Gaussian sampling point near the midpoint of the local 
optimal and global optimal positions, and the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 
represents the local optimal position of particle i in the kth 
iteration. 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 indicates the global optimal position in the 
kth iteration. 

The BBPSO algorithm utilizes the expectation and standard 
deviation of the Gaussian distribution to provide an efficient 
searching domain for particles. As the iteration progresses, the 
searching domain will gradually decrease, which will lead to the 
effective searching range being too concentrated, and it is 
difficult for the algorithm to obtain the optimal solution with 
high accuracy. 

In order to increase the diversity of particles, improve the 
local exploration ability of the algorithm, and make it easier to 
jump out of the local optimal, it is proposed to update the particle 
position in BBPSO by combining Gaussian distribution and 
Cauchy distribution, as shown in Equation (2): 

𝑥𝑥𝑖𝑖𝑘𝑘+1 = �
𝑁𝑁�𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + (1 − 𝑝𝑝) ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 , �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�� 𝑟𝑟 < 0.5
�𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + (1 − 𝑝𝑝) ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘� ∗ (1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐶𝐶(0,1)) 𝑟𝑟 ≥ 0.5

, 

(2) 
where p and r represent uniformly distributed random number 
in the range of [0,1], 𝑁𝑁�𝑝𝑝 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 + (1− 𝑝𝑝) ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 , �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑘𝑘 −
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘�� represents the Gaussian distribution similar to that used 
in BBPSO, C(0,1) represents a random number generated by 
Cauchy distribution with a scale parameter 1 centered at the 
origin, and here C(α, β) is calculated as shown in Equation (3): 

𝐶𝐶(𝛼𝛼,𝛽𝛽) = 𝛼𝛼 − 𝛽𝛽
𝑡𝑡𝑡𝑡𝑡𝑡(𝑝𝑝𝑝𝑝)

= 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽�(𝑝𝑝 − 0.5)𝜋𝜋�， (3) 
where p is a uniformly distributed random number in the range 
of [0,1]. 

In addition, in order to further improve the global exploration 
capability of the algorithm, Cauchy perturbation is added to 
update the global best position, as shown in Equation (4): 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑡𝑡′ = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 ∗ �1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝐶𝐶(0,1)�. （4） 
Cauchy perturbation is used to make the particle explore again 

around the overall optimal position, updating the global optimal 
solution if it finds a better solution than the current one, and 



maintaining the original particle optimal position if it is not 
found. The pseudo-code for the proposed algorithm is listed as 
follows: 

Algorithm 1: proposed algorithm based on BBPSO 
1 Initialize population; 
2 for k = 1 to maximum iteration do 
3 Update particles positions by Equation (2); 
4 Compute fitness 𝒇𝒇(x); 
5 Update the 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖

𝑘𝑘 and 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘; 
6 Cauchy perturbation by Equation (4); 
7 if 𝒇𝒇(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′)<𝒇𝒇(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘) then 
8  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘 = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔′; 
9 end if 
10 end for k 

III. ANALYSIS AND DISCUSSION 

A. Test functions and algorithms for comparison 
For analysis and comparison of algorithms, scholars have 

put forward some well-studied benchmark problems, such as 
Rosenbrock, Ackley, Griewank and other functions. [14] Even 
so, different researchers have different settings for function 
dimensions, rotation angles, etc., and some algorithms have 
advantages for multimodal problems, while others are more 
suitable for unimodal problems. Therefore, in order to study the 
algorithm more comprehensive, ten test functions were selected 
in this study, including Sphere, Rosenbrock, Schwefel 1.2, 
Schwefel 2.21, Schwefel 2.22, Quartic, Rastrigin, Griewank, 
Ackley, and Levy, as shown in Equation (5)-(14).  

Sphere 𝑓𝑓(𝑥𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1    (5) 

Rosenbrock 𝑓𝑓(𝑥𝑥) = ∑ [100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2]𝑛𝑛−1
𝑖𝑖=1   (6) 

Schwefel 1.2 𝑓𝑓(𝑥𝑥) = ∑ (∑ 𝑥𝑥𝑗𝑗𝑖𝑖
𝑗𝑗=1 )2𝑛𝑛

𝑖𝑖=1      (7) 

Schwefel 2.21 𝑓𝑓(𝑥𝑥) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  {|𝑥𝑥𝑖𝑖|, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛}  (8) 

Schwefel 2.22 𝑓𝑓(𝑥𝑥) = ∑ |𝑥𝑥𝑖𝑖|𝑛𝑛
𝑖𝑖=1 + ∏ |𝑥𝑥𝑖𝑖|𝑛𝑛

𝑖𝑖=1   (9) 

Quartic 𝑓𝑓(𝑥𝑥) = ∑ 𝑖𝑖𝑥𝑥𝑖𝑖4𝑛𝑛
𝑖𝑖=1 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟[0,1)   (10) 

Rastrigin 𝑓𝑓(𝑥𝑥) = ∑ [𝑥𝑥𝑖𝑖2 − 10 cos(2𝜋𝜋𝑥𝑥𝑖𝑖) + 10]𝑛𝑛
𝑖𝑖=1    (11) 

Ackley 𝑓𝑓(𝑥𝑥) = −20 exp�−0.2�1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 � − exp �1

𝑛𝑛
∑ 𝑐𝑐𝑐𝑐𝑐𝑐2𝜋𝜋𝜋𝜋𝑖𝑖𝑛𝑛
𝑖𝑖=1 � + 20 + 𝑐𝑐  (12) 

Griewank 𝑓𝑓(𝑥𝑥) = 1
4000

∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − ∏ cos �𝑥𝑥𝑖𝑖

√𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 + 1  (13) 

Levy 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝑦𝑦1) + ∑ (𝑦𝑦𝑖𝑖 − 1)2𝑛𝑛−1
𝑖𝑖=1 �1 +

10𝑠𝑠𝑠𝑠𝑠𝑠2(𝜋𝜋𝑦𝑦1 + 1)�+ (𝑦𝑦𝑛𝑛 − 1)2(1 + 𝑠𝑠𝑠𝑠𝑠𝑠2(2𝜋𝜋𝑦𝑦𝑛𝑛))  
 𝑦𝑦𝑖𝑖 = 1 + 𝑥𝑥𝑖𝑖−1

4
  

(14) 

The searching range, dimension, optimal solutions, and 
fitness of expressions are shown in Table I. Among them, the 
first six test functions are unimodal, and the last four test 
functions are multimodal. 

The four classical PSO algorithms SPSO, BBPSO, FIPSO 
and QPSO were selected for comparison in the study. In order 
to test the performances of two proposed modifications in this 
paper: updating positions by combining Gaussian distribution 
and Cauchy distribution, and Cauchy perturbation, the algorithm 
of BBPSO plus combining random distributions (named as 
GCBBPSO1), the algorithm of BBPSO plus Cauchy 

perturbation (named as BBPSO+C), and the full proposed 
algorithm (named as GCBBPSO) were compared. Table II 
describes the parameter settings of the above seven algorithms. 

TABLE I.  INFORMATION OF TEN TEST FUNCTIONS 

Function Search range Dimension xmin Fitness 
Sphere [-100,100] 30 0 0 
Rosenbrock [-2.048,2.048] 30 1 0 
Schwefel 1.2 [-100,100] 30 0 0 
Schwefel 2.21 [-100,100] 30 0 0 
Schwefel 2.22 [-10,10] 30 0 0 
Quartic [-1.28,1.28] 30 0 0 
Rastrigin [-5.12,5.12] 30 0 0 
Ackley [-32,32] 30 0 0 
Griewank [-600,600] 30 0 0 
Levy [-10,10] 30 1 0 

TABLE II.  ALGORITHM PARAMETER SETTINGS 

Algorithm Parameter settings 
PSO w=0.7298，c1=c2=2.05 
BBPSO Random structure 
FIPSO w=0.7298；c=0.5984；Von Neumann Topology 
QPSO c1=1.7，c2=1.8 
GCBBPSO1 Random structure 
BBPSO+C Random structure 
GCBBPSO Random structure 

B. Results and discussion 
For all algorithms, the number of particles was 50, the 

maximum number of iterations was 50,000. The mean and 
standard deviation of the optimal value, after running 100 times 
independently for each test functions, were calculated and are 
listed in Table III-IV, and the convergence curves of ten 
benchmark functions for seven algorithms are shown in Fig. 1. 
In Table III-IV, the values marked in bold font are the best 
performed algorithm for each function. In Fig. 1, each function 
was plotted in two forms: fitness (or cost function) against 
iteration, and log10 of fitness against iteration. 

For the ten benchmark functions, it can be seen from Table 
III and IV that the three proposed algorithms, GCBBPSO1, 
BBPSO+C, GCBBPSO based on BBPSO performed better than 
that of SPSO, BBPSO, FIPSO and QPSO in terms of solving 
accuracy and stability. It confirms that the two modifications in 
the proposed algorithm significantly improved the solving 
ability for different types of optimized problems.  

It can be seen from Fig. 1 that the three convergence curves 
for the proposed algorithm were always below that of four 
classical PSO algorithms, it means the proposed algorithm can 
solve the problems more efficiently than that of classical PSO 
methods, e.g., for most functions except Rosenbrock, the 
proposed methods can obtain the correct results within 500 
iterations. It can be seen that the phenomena of premature 
convergence more or less exist for four classical PSO 
algorithms. Comparing the convergences between three 
versions of the proposed algorithm, GCBBPSO can converge 
on the optimal solutions more quickly than that of others except 
for two functions, Rosenbrock and Levy.  



TABLE III.  THE MEAN OF THE OPTIMAL VALUES FOR THE SEVEN ALGORITHMS 

 SPSO BBPSO FIPSO QPSO GCBBPSO1 BBPSO+C GCBBPSO 

Sphere -2.01E-01 -2.93E-164 -2.33E-02 3.38E-01 8.29E-165 1.31E-164 -5.34E-165 
Rosenbrock 1.16E-01 9.15E-01 2.26E-02 2.29E-01 9.95E-01 6.77E-01 9.94E-01 
Schwefel 1.2 5.23E-02 5.00E-02 2.76E-02 9.25E-03 5.75E-166 4.83E-165 3.67E-165 
Schwefel 2.21 4.01E-02 9.11E-15 1.22E-01 2.74E-01 0.00E+00 0.00E+00 0.00E+00 
Schwefel 2.22 7.79E-01 -1.60E+00 1.14E-02 1.10E+00 0.00E+00 0.00E+00 0.00E+00 
Quartic -4.60E-04 -7.15E-04 6.33E-04 2.27E-03 -1.51E-04 -4.21E-05 1.10E-04 
Rastrigin 8.42E-03 3.35E-02 1.48E-02 4.93E-03 5.57E-11 8.33E-11 -1.08E-10 
Ackley 1.88E-01 1.12E-02 1.37E-02 -2.33E-01 2.49E-18 -1.06E-18 -4.97E-18 
Griewank -4.73E-01 2.03E-01 -3.78E-01 -4.91E+00 -2.68E-11 -3.77E-10 9.42E-11 
Levy 3.51E+00 1.24E+00 -1.93E-02 -3.11E+00 8.40E-01 9.99E-01 8.46E-01 

TABLE IV.  COMPARISON OF THE STANDARD DEVATION OF THE OPTIMAL VALUES FOR THE SEVEN ALGORITHMS 

 SPSO BBPSO FIPSO QPSO GCBBPSO1 BBPSO+C GCBBPSO 

Sphere 1.02E+00 0.00E+00 3.38E-01 1.74E+00 0.00E+00 0.00E+00 0.00E+00 
Rosenbrock 9.03E-02 2.20E-01 3.09E-02 6.89E-02 8.21E-03 1.12E-01 9.77E-03 
Schwefel 1.2 3.94E+00 4.57E+00 8.70E-01 3.61E+00 0.00E+00 0.00E+00 0.00E+00 
Schwefel 2.21 9.19E-01 9.17E-14 2.50E-01 2.22E+00 0.00E+00 0.00E+00 0.00E+00 
Schwefel 2.22 3.37E+00 5.08E+00 9.22E-01 4.01E+00 0.00E+00 0.00E+00 0.00E+00 
Quartic 5.89E-02 4.55E-02 2.11E-02 9.56E-02 2.29E-03 1.51E-03 1.52E-03 
Rastrigin 1.70E-01 1.36E-01 5.24E-02 1.41E-01 3.26E-10 4.76E-10 3.74E-10 
Ackley 5.01E-01 7.29E-01 9.07E-02 5.75E-01 2.78E-17 1.72E-17 2.35E-17 
Griewank 6.11E+00 1.09E+01 1.48E+00 9.76E+00 2.26E-09 3.69E-09 2.90E-09 
Levy 2.00E+01 4.59E+01 4.66E+00 2.02E+01 1.07E-01 2.77E-02 1.04E-01 
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Fig. 1. Convergence curves of ten benchmark functions for seven algorithms 

C. Applications in spectral reconstruction 
PSO algorithm has been widely used in various fields [15-

18]. In color science, spectral reflectance is the essential optical 
attribute of an object. Spectral reflectance reconstruction based 
on camera responses provides an effective way for color 
measurement. The workflow for spectral reconstruction based 
on multi-illuminant imaging is shown in Fig. 2, where spectral 
estimation matrix is usually trained by an optimization 
algorithm based on camera responses and measured reflectance 
of training samples.  
 

 
Fig. 2. The workflow for spectral reconstruction based on multi-illuminant 
imaging 

The optimized problem in matrix form can be descripted in 
Equation (15) 

𝑹𝑹� = 𝑮𝑮𝑮𝑮,    (15) 
where V is a C×M matrix of camera responses, 𝑹𝑹� is a N×M 
matrix of estimated reflectance, G is a N×C spectral estimation 
matrix; M is number of samples, N is number of spectral bands, 
typically N=31 for spectral wavelength from 400 to 700nm with 
10 nm intervals, C is the number of camera channels. In a multi-
illuminant imaging system, images are token using a color 
camera under multiply light sources, thus the number of camera 
channel C is depended on the number of light sources used. If 
the images are taken over one light source, C = 3; if the images 
are captured in sequence over two different light sources, C = 6, 
and so on. The larger the camera channel C is, the more 
complicate the optimized problem will be. 

To solve the Equation (15), it is common to use an 
optimization algorithm, such as pseudo-inverse, and Wiener 
estimation [19], etc., to minimize the root mean square error 
(RMSE) between the estimated reflectance 𝑹𝑹�  and measured 
reflectance 𝑹𝑹  of training samples. Unfortunately, the 
traditional estimation algorithm may obtain a matrix G at a local 
optimal solution if the optimized problem is too complicated, 
thus a global optimization algorithm based on particle swarm 
optimization (PSO) was proposed for spectral reconstruction in 
the current study. 

In the experiment, two color charts, a ScoColor textile color 
chart (ST240) from Zhejiang Scocie Instrument, China, and a 
ColorChecker Digital chart (SG140) from X-Rite, as shown in 
Fig. 3, were used as training samples and testing samples, 
respectively. The reflectance of each color in two charts was 
measured using a spectrophotometer Ci64UV and served as the 
target data of the experiment. 

The experiment was carried out under an enclosed 
environment with nine program-controlled light sources, such as 
HZ, A, D50, D65, D75, D90, D100, D120 and D160, etc. Images 
of two color charts under different light sources were captured 
in sequence using a color industrial camera with a resolution of 
4096×3000 and a depth of 12 bits, and camera responses for 
colors in two charts were extracted from those images, and used 
as the original experimental data for the current study. 

For comparison, the spectral estimation matrix G was 
estimated using four algorithms including traditional pseudo-
inverse (PI), SPSO, BBPSO, and the proposed GCBBPSO. The 
pseudo-code for spectral reconstruction utilizing a PSO 
algorithm is listed as follows: 

Algorithm 2: spectral reconstruction using a PSO 
1 for i = 1 to 31 (for wavelength from 400 to 700nm) do 
2 Run a PSO, e.g., SPSO, BBPSO or GCBBPSO; 
3 G(i, :) = 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑘𝑘; 
4 end for i 

In order to investigate the optimal number and combination 
of light sources in multi-illuminant imaging, the experiments of 
spectral reconstruction were conducted from images under 
different illuminant combinations, i.e., all possible combinations 
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from one to five light sources. Due to the limitation of space, 
only the average testing accuracies in terms of CIEDE2000 color 
difference ∆𝐸𝐸00 [20] under different light source combinations 
are listed in Table V. The values marked in bold font in Table V 
are the best illuminant combination for each algorithm. The 
smaller the ∆𝐸𝐸00  value, the higher the accuracy of color 
predicted. 

  
(a)  (b) 

Fig. 3. Two sets of samples (a) ST240, (b) SG140, used in the experiment 

TABLE V.  AVERAGE TESTING ACCURACY OF SG140 IN TERMS OF ∆𝐸𝐸00 
UNDER DIFFERENT ILLUMINANT COMBINATIONS 

Light sources PI SPSO BBPSO GCBBPSO 

Single  2.61 2.61  2.61  2.61  

Two  1.24 1.35  6.43  1.24  

Three  1.39 3.68  11.23  1.31  

Four  1.74 5.05  12.13  1.43  

Five  2.07 6.00  11.79  1.64  

 

It can be seen from Table V that for reconstructing spectral 
from images under single illuminant, the four tested algorithms 
were working well and performed almost similarly, that means 
they can solve the simple optimized problems. However, the 
SPSO and BBPSO did not work with increasing the complexity 
of the problems, e.g., BBPSO and SPSO did not work after two- 
and three-illuminant combinations, respectively. The proposed 
GCBBPSO can find the optimal solutions for all tested cases. 
Comparing with PI method, the proposed method can obtain 
more accurate results for more complicated optimized problems. 
It is concluded that comparing with the classical SPSO and 
BBPSO algorithm, the proposed GCBBPSO algorithm is good 
at searching for global optimum for complicated problems. 

IV. CONCLUSION 
Aiming at the defects that particle swarm optimization is 

easy to fall into local optimum, a combination of Gaussian 
distribution and Cauchy distribution was used to update the 
particles positions, which can make it easier for particles to jump 
out of local optimum and make the algorithm better to cover the 
space of the solution. After updating the best position of all 
particles, Cauchy perturbation was used to further search around 
the current best particle position, which improves the global 
searching ability of particles. The proposed algorithm was tested 
using ten benchmark functions and an engineering optimized 
problem. The experimental results verify the effectiveness of the 
proposed algorithm. 
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