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- A fused CNN architecture achieving classification accuracy rate of 87.62%. 
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 While Computerised Tomography (CT) may have been the first imaging tool to study human 

brain, it has not yet been implemented into clinical decision making process for diagnosis of Alzheimer’s 

disease (AD). On the other hand, with the nature of being prevalent, inexpensive and non-invasive, CT 

does present diagnostic features of AD to a great extent. This study explores the significance and impact 

on the application of the burgeoning deep learning techniques to the task of classification of CT brain 

images, in particular utilising convolutional neural network (CNN), aiming at providing supplementary 

information for the early diagnosis of Alzheimer’s disease. Towards this end, three categories of CT 

images (N = 285) are clustered into three groups, which are AD, Lesion (e.g. tumour) and Normal ageing. 

In addition, considering the characteristics of this collection with larger thickness along the direction of 

depth (z) (~3-5mm), an advanced CNN architecture is established integrating both 2D and 3D CNN 

networks. The fusion of the two CNN networks is subsequently coordinated based on the average of 

Softmax scores obtained from both networks consolidating 2D images along spatial axial directions and 

3D segmented blocks respectively. As a result, the classification accuracy rates rendered by this 

elaborated CNN architecture are 85.2%, 80% and 95.3% for classes of AD, Lesion and Normal 

respectively with an average of 87.6%. Additionally, this improved CNN network appears to outperform 

the others when in comparison with 2D version only of CNN network as well as a number of state of the 

art hand-crafted approaches. As a result, these approaches deliver accuracy rates in percentage of 86.3, 

85.6 ± 1.10, 86.3 ± 1.04, 85.2 ± 1.60, 83.1 ± 0.35 for 2D CNN, 2D SIFT, 2D KAZE, 3D SIFT and 3D KAZE 

respectively. The two major contributions of the paper constitute a new 3-D approach while applying 

deep learning technique to extract signature information rooted in both 2D slices and 3D blocks of CT 

images and an elaborated hand-crated approach of 3D KAZE. 

Keywords Deep learning, convolutional neural network, Classification, CT brain images, 3D CNN, 

SIFT, KAZE. 

1 INTRODUCTION 

1.1 CT Brain Images 

Today, in the UK, 800,000 people have been formally diagnosed with the condition of dementia [1]. In 

reality, it is estimated that 60% of people who are living with the condition go undiagnosed [2]. This is 

because the determination of dementia remains a convoluted process as symptoms come and go. As a 

result, more comprehensive data remain in need to provide complementary information. Due to its 

prevalent, non-invasive and inexpensive nature, Computerised Tomography (CT) is in service in nearly 

Page 2 of 18



every hospital while presenting good quality of visual information of human organs. In addition, CT 

remains probably the first imaging tool that was introduced into the study of human brain and has since 

been widely applied as the first choice to eliminate other possibilities when it comes to the diagnosis of 

Alzheimers’ disease (AD). 

 Although most patients have undertaken this scanning as a prelude to imaging inspection, 

mainly for the purpose of ruling out the other alternatives (e.g., tumour, stroke, etc.), CT data have not 

been implemented into the clinical diagnosis of AD due to their relatively low resolution and variations 

among manual measurement of certain features, such as medial temporal lobe that is associated with 

AD. Moreover, with regard to CT brain images, specified brain atrophy is associated with not only AD but 

also normal ageing and cerebral vascular diseases. For example, the medial temporal lobe atrophy (MTA) 

together with Cerebrospinal Fluid (CSF) biomarkers has been demonstrated as the most important 

diagnostic markers for AD, which however may not be specific. In addition, the atrophy of hippocampus 

(in particular, left hippocampus) that has been found in AD also emerges in healthy ageing adults [3]. 

But in spite of these concerns, recently, it has been found that CT data can contribute significantly to the 

diagnosis of AD with 90.2% accuracy rate [3] through accurate measurement of atrophy factors between 

temporal horn ratio and suprasellar cistern ratio. Therefore, CT linear measurements can be of great 

value in the work-up processes of AD patients to a large extent. 

 To alleviate the considerable variations [4] that may incur during manual measurements, this 

study is to investigate a non-supervised automatic process employing the state of the art of 

convolutional neural network (CNN) to the classification of CT data between AD, healthy (normal) ageing 

and lesion brain data. 

1.2 Convolutional Neural Network (CNN) 

Deep learning models refer to a class of computing machines that can learn a hierarchy of features by 

building high-level attributes from low-level ones [5, 6], thereby automating the process of feature 

construction. One of these models is the well-known convolutional neural network (CNN) [6]. Consisted 

of a set of algorithms in machine learning, CNN comprises several (deep) layers of processing involving 

learnable operators (both linear and non-linear), and hence has the ability to learn and build high-level 

information from low-level features in an automatic fashion [7]. Stemming from biological vision 

processes, a CNN applies a feed-forward artificial neural network to simulate variations of multilayer 

perceptrons whereby the individual neurons are tiled in such a way that they respond to overlapping 
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regions in the visual field [8]. As a direct result, these networks are widely applied to image and video 

recognition. Specifically, CNNs have demonstrated as an effective class of models for understanding 

image content, proffering state of the art results on image recognition, segmentation, detection and 

retrieval. In other words, when trained with appropriate regularization, CNNs can achieve superior 

performance on visual object recognition tasks without relying on any hand-crafted features, e.g. SIFT, 

SURF. In addition, CNNs have shown to be relatively insensitive to certain variations on the inputs [9]. 

Significantly, recent advances of computer hardware technology (e.g., Graphics Processing Unit (GPU)) 

have propitiated the implementation of CNNs in representing images. 

 Theoretically, CNN can be expressed in the following formulas. For example, for a set of training 

data ),(
)()( ii

yx , where image 
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x  is in three-dimension (inclusive of RGB channel as the 3rd dimension) 

and 
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,..., 1
1

=1

1
( ; , ..., )

n

i

w w L
L

i

argmin f x w w L
n
  (1) 

 Where ℓ refers to a suitable loss function (e.g. the hinge or log loss) and f the selected classifier. 

 To obtain these feature maps computationally, in a 2D CNN, the operator of convolution is 

conducted at each convolutional layer to extract features from local neighbourhood on the feature 

maps acquired in the previous layer. Then an additive bias is applied and the result is passed through a 

sigmoid function as formulated in Eq. (2) mathematically in order to obtain a newly calculated feature 
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 where the notations of those parameters in Eq. (2) are explained in Table 1. 

 As a result, CNN architecture can be constructed by stacking multiple layers of convolution and 

subsampling in an alternating fashion. The parameters of CNN, such as the bias bij and the kernel weight 

pq

ijk
w

 are trained using unsupervised approaches [10, 11]. 
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 In the same way, the 3D convolution is achieved by convolving a 3D kernel to a block or box 

along both x-y (2D) and z directions where Eq. (2) is extended into Eq. (3) to calculate the value at 

position (x,y,z) on the jth feature map in the ith layer. 
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 where Ri indicates the size of the 3D kernel along the z dimension, 
pqr

ijm
w

 is the th
rqp ),,(

 the 

value of the kernel connected to the mth feature map in the previous layer. 

 While CNNs have lent themselves well to the computer vision field and achieved state-of-the-art 

results, they are built mainly for 2D images. Although several papers report the work on 2D videos [12, 

13] considering time as the 3rd dimension, working on 3D still images is quite a different task to a 

certain extent [14]. In this study, both 2D and 3D forms of CNN are elaborated in details for the 

application of classification of CT brain images with detailed implementation presented in Section 2. 

 This paper is structured in the followings. Section 2 entails the methodologies that are employed 

in this study completed with detailed implementation of CNN. In addition, Section 3 puts forward the 

results as well as comparisons with a number of hand-crafted techniques whereas the conclusion and 

future recommendations are summarised in Section 4. 

2 METHODOLOGY 

2.1 Data pre-processing and averaging 3D CT images 

Conformed to the patient informed consent, a total of 285 datasets of 3D are collected from Navy 

General Hospital, China, which compose 57, 115 and 113 data respectively in the category of Alzheimers 

(AD), lesion and normal. In this collection, CT data vary in resolution in both depth between 16 to 33 

slices and dimension with either 512 × 512 or 912 × 912 pixels. Figure 1 depicts the montage of three 

datasets associated with Alzheimers (top), Lesion (middle) and Normal (bottom) respectively. 

 In 2D form, all slices are cropped and normalised into 200 × 200 pixels to exclude information 

tags on each slice. For normal and AD data, the middle 20 slices are employed for the processing, 

whereas for lesion data, only slices that contain visual lesion features (e.g. tumour) are employed. As a 
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result, although lesion datasets amount to the largest (N = 115) among three classes, the overall 

numbers of slices are similar to the other two. 

 In parallel, in 3D form, firstly each dataset undergoes processes of registration, segmentation 

and normalisation to arrive at a resolution of 200 × 200 × 20 pixels. Then, because of their relatively 

thickness in-between CT slices (~3-5 mm) in comparison with their counterparts of MR images (0.5 mm), 

spatial normalisation is performed to align all 3D CT images into the same space and opts for the 

approach of rigid body geometric transformation [14]. 

 After normalisation, each 3D dataset is divided into 40 × 40 × 10 boxes. Similar to 2D form, for 

both AD and normal data, all the boxes/blocks are applied to train the CNN network whereas for lesion 

data, only blocks that contain lesion contents are employed. 

2.2 Implementation of 2D and 3D CNNs 

In this study, the implementation of 2D convolutional deep learning neural network (CNN) takes shape 

of MatConvNet [11] written in Matlab software, along the axial direction of the brain. Figure 2 

schematically illustrates the deep learning network architecture employed in this study integrating both 

2D and 3D CNNs networks. Each network consists of seven layers whereas each layer embodies a 

number operators (liner or nonlinear), mainly Convolution and Sub-sampling. The Conv operator usually 

computes the output of neurons to be re-connected to local regions in the input, by producing a dot 

product between their weights and a small region they are supposed to link to in the input volume. For 

example, the input size of 11 × 11 × 96 in layer 1 (i.e. Conv-1) at Figure 2 top graph, indicates the 

neighbourhoond filter (F) size, i.e. weight, being 11 × 11 whereas 96 bank of filters are chosen to apply. 

In the subsampling as illustrated in Figure 2, the resolution of the feature maps is reduced by pooling 

over local neighbourhood on the feature maps in the previous layer, thereby increasing invariance to 

distortions on the inputs. The down size rate is controlled by pooling stride (P-S) and is set to be 2 at 

layer 1, i.e. the data size has been halved after pooling stage. 

2 1 1 2
= ( ) = (..., ( ( , ), ), ...), )

L L
y f x f f f x w w w  (4) 

 Specifically, in each layer, to learn jointly, both forward and backward processing are staged 

composed of several operators in an end-to-end manner. As such, a forward neural network tends to be 

the composition of a number of functions as formulated in Eq. (4) [11]. 
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 Each function fl takes a datum xl as input that has a size of M × N pixels × K channels (default K 

being 3 representing R, G, and B colour channels) and a parameter vector wl, then produces an output 

datum 1)( l
x

. The very first input of x = x1 indicates a CT image that is to be processed whereas the rest 

of xl (l¿1) are intermediate feature maps. For each convolutional layer, the initial input filter bank of wi is 

randomly generated but with pre-defined filter sizes. For example, in Figure 2 top graph, for Conv-1, the 

filter size is set as 11 × 11 × 3, generating 96 filter banks. The output of the convolution with this bank of 

filters, y, is assessed in Eq. (4). 

, ,
= ( )

i j k ijk ijkk i i j j k
y sum w x
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 (5) 

where k′ = 96, k = 3, i′ = 11, and j′ = 11 for the first Conv layer. In other words, each convolutional 

operator generates K dimensional map of y by Eq. (5). For example, for block 1, If x0 = (200,200,3) with 

the original image size, then feature map has a size of x1 = (48,48,96) after layer-1 convolutional 

operator. The calculation of the size of feature maps follow the rule that is set out in Eq. (6). 
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x

i

size

isize

i

 (6) 

 For example, in Figure 2 top graph layer 1, the parameters are set to be F0 = (11 × 11) along both 

x any y directions, Pad = 0, Stride = 4, leading to the size of x1 being 48 × 48 × 96 (i.e., 

111)/4(200=48  ). Since the images are in grey level, the 3rd channel representing RGB colours is 

ignored at this paper. 

 Additionally, each component or pixel of a feature map is subject to a non-linear gating process 

to legitimize the processed data. In doing so, the simplest approach of rectified linear unit (ReLU) is 

applied as conveyed in Eq. (7) that thresholds the data with zero. 

= (0, )
ijk ijk

y max x  (7) 

 This operator however does not change the size of each feature map. 

 To down size the feature map, pooling is employed to coalesce nearby feature values into one 

downsided samplings and reduce the influence of noise while operating on each individual feature 

channel. The most commonly used choice of pooling remains to be max-pooling to select the largest 

component within a neighborhood as manifested in Eq. (8). 
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 Whereas the downsize rate is controlled by pooling stride (P-S). As a result, the output size of 

Layer 1 in Figure 2 top graph, has a dimension of (24,24,96) where 
48

24
Pool_Stride

  that is computed 

using Eq. (6) and where Pool_Stride = 2 . 

 Another important operator is Dropout to deal with overfitting in the CNN networks. As such, 

randomly dropout units (along with their connections) from the neural network during training stage are 

selected and discarded. The dropout rate in this study is set to be 0.5, i.e. half of the data units. 

 Once each layer of forward processing is completed, backward process proceeds to ensure that 

the parameters of feature maps of ),,(=
1 L

www  are learned in such a way that the overall function 

of z = f(x, w) sustains a minimum loss, )ˆ,( zz , where 
),,,(=

1 i
zzz

 corresponds with the output 

value of xi and i
ẑ

 the ground truth of xi in the training datasets. Therefore the loss function can be 

determined in Eq. (9). 
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 There exists a number of algorithms to minimise L. In this research, the approach of gradient 

descent is employed which quantifies the gradient of L at a current solution wt and then updates the 

latter along the direction of fastest descent of L as revealed in Eq. (10). 

)(=
1 t

t

tt
w

w

f
ww









 (10) 

 where ηt refers to the learning rate that is usually pre-defined and is within the range of (0, 1). In 

this way, parameters of w can be solved using training datasets. 

 Most importantly, while filter sizes can be of any size within the limit of data sizes, they are 

chosen manually in advance. In addition, the dimension of the output layer at the end of CNN 

architecture must be 1 × 1 × 3, which reduces the full input image into a single vector of class scores (in 

our case, class number is 3), arranged along the depth dimension and can be computed using Eq. (??) 
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together with the values of pooling stride. For example, the output sizes of all 7 Layers of 2D CNN laid 

out in Figure 2 entail sizes of (24,24,96), (6,6,256), (6,6,384), (6,6,256), (1,1,192), (1,1,96) and (1,1,3) 

respectively when the input sizes are (200,200). 

 In 3D CNN, the implementation of each block contains two operators of convolution and pooling 

respectively as depicted in Figure 2 bottom graph. Analogous to 2D CNN, 3D max-pooling operator is 

implemented by taking a block with k × m × n dimension as an input and yielding a single value that 

holds the maximum of the block. Similarly, given the input size of (40,40,10), the output sizes of the 

seven layers are of (9,9,9,96), (7,7,8,256), (5,5,7,384), (6,6,7,256), (4,4,5,1024), (1,1,2,4096), and (1,1,1,3) 

respectively. 

2.3 Classification and Fusion 

In 2D form, image slices are applied to train the 2D CNN model, whereas in 3D form, small cubes (40 × 

40 × 10) are utilised. The classification at each network is performed using Softmax classifier [15] that 

determines a score of normalized class probabilities. Eq. (11) defines mathematically the Softmax 

function. 

( ) =

z
j

i z
k

k

e
f z

e
 (11) 

 where the function takes a vector of arbitrary real-valued scores (in z) and compresses it to a 

vector of values between zero and one that sum to one. The obtaining of the class scores f involves the 

calculation of cross-entropy loss that is formulated in Eq. (12). 

=
f

j

i y
i

j

L f log e    (12) 

 where the notation fj refers to the jth element of the vector of class scoresf [15]. 

 After the establishment of class scores at each of 2D and 3D networks individually, the fusion 

takes place linearly. For the category of Normal subject, a datum is classified as Normal only if more 

than 95% of the slices of its dataset are labelled as Normal as well as all cubes (or boxes) have to be 

labelled as Normal, whereas for classes of AD and Lesion, the majority voting ascertain the final 

classification scores. 
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2.4 Classification based on hand-crafted features of 3D SIFT 

In this research, comparison with two hand-crafted approaches for feature detection is also conducted, 

including Scale Invariant Feature Transform (SIFT) [16] and KAZE [17]. 

 As demonstrated in Figure 3, the implementation of 3D SIFT engages in the process of SIFT 

feature detection through the application of Difference of Gaussian (DoG) operators and sparse coding 

[18, 19], codebook generation by the employment of the paradigm of Bag of visual Words (BoW) [20, 

21], image representation using the created codebook and finally classification based on support vector 

machines (SVM). 

2.5 Implementation of 3D KAZE features for classification 

While SIFT can extract features that maintain scale invariant, it lacks sophistication in locating boundary 

and structural details, which is particularly important for medical images where precise delineation of a 

region is in need most of the time [22]. This has led to the investigation of another hand-crafted 

approach of KAZE technique. By deciding to apply a nonlinear scale space through the consolidation of 

nonlinear diffusion filtering [23], KAZE circumvents the shortcomings that SIFT presents. 

 To extend this technique to 3D, in this study, the detection of KAZE features engages in the 

processes of 3D Gaussian smoothness, calculation of conductivity, creation of nonlinear scale spaces, 

extraction of features and finally coarse-to-fine suppression. Consequently, the gradients of feature 

points can be detected by the application of either Eq. (13) or Eq. (14) or both at two different levels. 
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 where K indicates the contrast parameter to control the smooth level, which can be determined 

automatically based on the intensity distribution levels of CT images, ∇ the gradient operator and |.| the 

absolute value. 

3 RESULTS 
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Based on the formulae entailed above, both experimental and evaluation results are attained. Table 2 

provides detailed numbers of images that are utilised in each category in this evaluation. In total, there 

are 285 datasets in 3D form consisted of 4076 2D slices. They are divided into 2 sub-groups while 

applying CNN approach, which are training and testing respectively. 

 For training, 180 datasets are assigned and selected randomly containing 2700 in 2D and 3795 in 

3D, whereas the remaining 105 datasets are reserved as test sets. Consequently, the confusion matrix 

for the testing data is given in Table 3 that presents the accuracy rates of classification for the three 

classes, which gives 85.2%, 80.0%, and 95.3% for Alzheimer’s, Lesion, and Normal respectively, with an 

average of 87.62%. 

 Evaluation with the two hand-crafted techniques of 3D KAZE and 3D SIFT also takes place with 

confusion matrixes giving in Tables 4 and 5 respectively. In summary, the average accuracy rate is 83.2% 

for 3D KAZE and 85.2% for 3D SIFT. When applying these two approaches, one-verse-all strategy is 

appointed during the training/testing stage due to the concern of small number of datasets. In this way, 

one data set (N = 1) is randomly selected as a test datum whereas the rest (N = 284) remains as training 

sets throughout the whole database. The data obtained in both Tables ?? and 5 are the averaged results 

of 10 rounds of training-test processes. Subsequently, the standard deviations of these 10 rounds for 

KAZE and SIFT lie within the range of ±0.35% and ±1.60% respectively. 

 While each CT dataset is of 3D form, the depth between every 2 slices along the depth-direction 

is relatively large (~3.0-5.0mm). Hence it is reasonable to accept that CT images can also be considered 

on a 2D basis. Accordingly, both 2D versions of SIFT and KAZE for feature detection are evaluated and 

compared. Towards this end, Fisher vector [24] coupled with VLFeat library [25] is applied to represent 

features. The final classification score for each subject is a linear combination of scores of histograms for 

all the slices. As discussed above, for the normal class, each subject is clustered as normal unless all but 

one slice are labelled as Normal (i.e. req 95 %). Table 6 presents the comparison results and indicates 

that the 2D forms of hand-crafted approaches of both SIFT and KAZE appear to outperform their 3D 

counterparts, especially for KAZE with a margin of 3% differences, which could be explained away by the 

fact that this group of CT data do have substantial low depth resolution. In addition, the proposed 

synergy of 2D/3D CNN approach appears to have achieved the best result so far with 87.6% accuracy 

whereas both 2D CNN and 2D KAZE deliver similar performance standing in second place. Considering 

the fact that CNN is renowned for performing better with larger datasets whereas this study has a small 

disposal of samples (N = 285), the good performance that CNN based approaches have confirmed the 
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potential that deep learning techniques possess for classification of CT images. It is envisaged that more 

datasets will be collected in the future to take the findings forward in order to benefit a wider 

communities, including patients, clinicians and academia. 

4 CONCLUTION AND DISCUSSION 

This research concerns with the classification of CT images into three categories of Alzheimer’s, Lesion, 

and Normal through the application and elaboration of a deep learning neural network, CNN. Although 

the category of Lesion comprises the largest number of the dataset (N = 115), not every 2D slice or 3D 

block contains lesion signature information, e.g. tumour. As a result, the lesion group has the smallest 

number of images with 947 slices, whilst AD and Normal groups holding 1000 and 2129 images 

respectively in 2D form. Although the differences in number may not be significant, in particular 

between AD and Lesion groups, the classification results appear to be in line with the number of data 

that each group has. For example, the normal subject group that dominates the datasets with a total of 

2129 image slices produces the highest accuracy rate of 95.3%. Similar trend also appears in the 

application of 3D KAZE and 3D SIFT approaches. Therefore the direct conclusion remains that more data 

will achieve better classification results. In addition, the results given by KAZE tends to be more robust 

with less variations than by SIFT, especially 3D KAZE that sustains only ±0.35% standard deviations. 

 In addition, while CT brain data are in three dimensional, the larger thickness (~3-5mm) 

between slices in this collection has led to the classification results in 3D form worse than in 2D form. 

The fusion therefore takes place to take the advantage of assimilation of both 2D and 3D networks while 

preserving differentiating characteristics of CT images in both forms. Similarly, it appears that the 3D 

version of both hand-crafted approaches of SIFT and KAZE are relegated from their 2D form with worse 

performance. In the future, this phenomenon will be further explored with a collection of more CT data 

and higher spatial resolutions. 

 At present, although nearly every patient with suspected AD undertakes CT scan, mainly for 

ruling out the other explanations, CT data have not been included in the diagnosis process yet. With the 

encouragement of classification results obtained from deep learning techniques, it is anticipated that in 

the future, a learnable expert system will be in the pipeline to assist clinicians to corroborate 

Alzheimer’s disease while integrating all the available data (e.g. memory test, lab test, CT images, etc.), 

leading to the improvement of current diagnosis rate of AD (~33%). Although CT images present a 

number of diagnostic features of AD as detailed in [26], for example, the neuro-pathologic changes in 
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the temporal lobe, including focal atrophy of the subiculum and entorhinal cortex, manual 

quantification of these key measurements does introduce considerable errors, which can lead to 

decisions being problematic [4]. This research intends to shed light on the significant contribution that 

unsupervised deep learning techniques can make towards classification of CT data, which in the next 

stage will be followed by the measurement of those AD diagnostic features precisely using CNN, 

allowing CT images to measure up to their potentials and benefit patients, caregivers and society as a 

whole. 
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Figure 1: The montage view of the middle 18 slices of CT images from subjects with Alzheimers disease 

(top), Lesion (middle), and of Normal (bottom) respectively. 

Figure 2: The fusion of both 2D and 3D CNNs for CT images. 

Figure 3: The flowchart of classification of CT images applying 3D SIFT features. 

 

Table 1: Notations of parameters in Eq. (2). 

Parameter Notation 

tanh(.) hyperbolic tangent function 

m index over the set of feature maps in the (i-1)th layer 
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bij bias for the feature map f in Eq. (1) 

pq

ijk
w

 
value at the position (p, q) of the kernel connected to 

the kth feature map 

(p,q) 2D position of a kernel 

Pi, Qi height and width of the kernel 

 

Table 2: The data sets (in subject number) for both training and testing applied in each network. The 

numbers in brackets are the total number of 2D slices and 3D blocks in that category. 

 Alzheimer’s Lesion Normal Total 

Training 30 80 70 180 

2D Frame 700 700 1300 2700 

3D boxes 775 1160 1860 3795 

Test 27 35 43 105 

2D Frames 300 247 829 1376 

3D boxes 675 840 1161 2676 

Total 57 115 113 285 

2D frames 850 947 2129 4076 

3D boxes 1450 2000 3021 6471 

 

Table 3: The confusion matrix of testing results of three clusters using improved CNN networks. 

 Alzheimer’s Lesion Normal Accuracy rate 

(%) 
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Alzheimer’s 23 4 0 85.2 

Lesion 3 28 4 80.0 

Normal 2 0 41 95.3 

Average    87.62 

 

Table 4: The confusion matrix for 3D KAZE approach. 

 Alzheimer’s Lesion Normal Accuracy rate 

(%) 

Alzheimer’s 44 5 8 77.2 

Lesion 8 93 14 80.9 

Normal 8 5 100 888.5 

Average    83.15 ± 0.35 

 

Table 5: The confusion matrix for 3D SIFT approach. 

 Alzheimer’s Lesion Normal Accuracy rate 

(%) 

Alzheimer’s 36 6 15 63.2 

Lesion 4 102 9 88.7 

Normal 3 6 105 92.9 

Average    85.26 ± 1.60 
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Table 6: Comparison between CNN and hand-crafted approaches. 

Methods Accuracy rate 

(%) 

2D SIFT 85.61 ± 1.10 

2D KAZE 86.31 ± 1.04 

3D SIFT 85.26 ± 1.60 

3D KAZE 83.15 ± 0.35 

2D CNN 86.32 

3D CNN 87.62 
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