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Abstract— With the arrival of the state of the art medical 
imaging equipment, a plethora of images are acquired not only 
in higher dimensions (3D+) but also with various presenting 
forms of either still or motion, complicating data management 
systems even further. This paper offers, from an application 
point of view, representations of content features from both still 
3D MR brain images and 3D ultrasound cardiac video sequences 
by demonstrating a developed online content-based image 
retrieval system, MIRAGE. The approaches of 3D SIFT coupled 
with sparse code have been appointed to facilitate the 
representation of image features, whereas widely applied four 
texture based approaches are also implemented to allow users’ 
benefit of different retrieving intentions.  

Keywords-Imaging, representing biomedical knowledge, multi-
media image retrieval. 

I. INTRODUCTION  
Three dimensional images, including both still pictures 

and motion videos, are at present a common form in 
hospitals in assisting clinicians performing diagnosis or 
intervention, such as 3D MR brain images or ultrasonic 2D 
video clips with time scale being the third dimension. With 
regard to still images, structured templates usually exist, 
containing constructive geometric properties, such as shape 
or texture, the characteristics that can be employed to 
standardise those images in terms of their content features. 
For motion videos that are of a function of both space and 
time, however, additional data might be needed to ensure 
that the starting time is in the same cycle for all the datasets 
in a database.  

With regard to 3D still brain images, many methods for 
feature representation of content have been developed, 
including intensity-based [1], physiological-information-
based [2], and textured-based [3]. With the application of 
the Talairach [4] brain atlas, intensity-based approach takes 
advantages of spatial references to concert a region-based 
retrieval, in which a regional or a volumetric data is 
expressed as <x, y, z, value>.  Since this representation is 
reminiscent of image matrix, depending on the size of each 
region/volume, the presentation volume of each image can 
be as large as the size of an image dataset itself, to a certain 
extent, missing the point of representing images using 
features to reduce redundant information and therein being 
prone to artefacts. On the other hand, by using 
physiological-information-based retrieval, a number of 
semantic contents can be dealt with by employing 

physiological kinetic features of images [2]. Although 
effective, this method is very discipline-constrained and 
heavily relies on the additional supply of extra information, 
such as blood samples in order to derive plasma time 
activity (PTA) curves, gaining prospective in searching for 
alternative approaches.  

Texture-based approach to extract features from 3D MR 
brain images is originally applied by the employment of 2D 
Gabor filter [5], which in essence remains a 2D approach. 
After further extension and tailoring, 3D textures are 
obtained from four well known approaches in [3], including 
Local Binary Pattern (LBP), Grey Level Co-occurrence 
Matrices (GLCM), Wavelet Transforms (WT) and Gabor 
Transforms (GT). For the application to 3D brain images 
using texture-based approaches, the prerequisite resides on 
the spatial normalisation to a standard template. In this way, 
the comparison of each sub-volume (cube) within the same 
location between images can be conducted under the 
assumption that geometrically, all brains bear similar 
anatomic structure. In practice, however, due to lesioned 
brains sustaining appreciable distortions, the texture features 
even from normalized images cannot be unique in relation 
to representations, which is also true for video images. To 
overcome this deficit, in this study, key point based feature 
representation by the appointment of scale invariant feature 
transformation (SIFT) coupled with a machine learning 
technique of sparse coding is implemented, towards 
developing an online system of content-based image 
retrieval (CBIR) system for medical images 
(http://image.mdx.ac.uk/time/demo.php).  

SIFT descriptors [6], being invariant to geometric 
transformations of translation, scaling and rotation, provide 
robust feature matching mechanisms across a substantial 
range of changes in illumination while with the presence of 
noise. It is therefore widely applied in the domain of object 
recognition and image stitching. In addition, a 3D extension 
of the SIFT algorithm has recently been proposed in the 
literature on 3D volumetric data analysis, such as, action 
recognition in video volumes [7], object recognition in CT 
complex volume [8], 3D medical registration and panoramic 
medical image stitching [9]. Evidently, each type of dataset 
present their own unique set of characteristics that 
subsequently require the application of SIFT in a different 
way as to the extraction of potential features.  

1978-1-4799-4053-0/14/$31.00 ©2014 IEEE SSIAI 2014



The remainder of the paper is structured as follows. 
Section II addresses mathematical formulae underling the 
methodology, which is then followed by the results on the 
application of CBIR for brain images and classification for 
cardio videos given in Section III. The paper is then 
concluded in Section IV.  

 

II. METHDOLOGY 
The procedures involve sparse coding of 3D salient 

content features and the creation of a codebook of visual 
dictionaries. 

A. Pre-processing 

Local visual feature selection usually remains the first 
task to conform.  For an MR brain image, after spatially 
normalised to an MNI (Montreal Neurological Institute) 
template, it is spatially partitioned equally into non-
overlapped sub-cubes of 512 (=8×8×8). In this way, the 
retrieval practice can be conducted by focusing on each 
corresponding sub-cube without the need of cross-
comparison, saving considerable retrieving time.  

On the other hand, for motion video clips, low-level 
interest-points are found out first as potential candidates for 
cross-image comparisons. To detect a spatial-temporal 
interest point, the technique of Cuboid detector [10] are 
opted for in an attempt to overcome the inability that many 
other methods suffer from with reference to incorporating 
temporal information.  

With respect to still brain images, 3D SIFT descriptors 
are applied to enumerate local visual features by computing 
a 3D gradient orientation histogram for each of 512 sub-
volumes. In doing so, further division is performed on each 
sub-volume to create eight (=2 × 2 × 2) sub-blocks, upon 
each of which, the magnitude and orientation of its gradient 
are calculated,  by the application of 1D Haar wavelet 
transform in each of x, y and z directions respectively, 
forming bins of orientations accumulating the magnitude 
values that share the same gradient orientation. Subseuently, 
based on the tessellation technique, eighty bins of 
orientation are rendered in a 3D orientation sphere for each 
sub-block, leading to a feature vector of 640 dimensions 
(=2×2×2×80) for each sub-volume.  

Likewise, a 3D SIFT descriptor consisted of 640 
elements is extracted as a feature vector in video images, in 
this case to represent each interest voxel instead of sub-
volume. Centered at each interest voxel, detected by using 
the Cuboid detector, a 12 x 12 x 12 volume of 
neighbourhood is selected and then divided into 8 (=2x 2 
x2)  sub-volumes that subsequently undertake the same 
procedure of calculation of gradients as explained above. 

 
B. Visual Vocabulary Construction Using Sparse Coding 
 

Once 3D SIFT features, i.e., the candidates for unit 
elements, or “words” in a visual dictionary, are accounted 

for from each sub-volume or voxel, sparse coding follows to 
allow the creation of dictionary of visual ‘words’.  

In theory, by modeling data vectors as a sparse linear 
combination of a set of basic elements or ‘words’, sparse 
coding [11] encodes each descriptor of an image by solving 
the optimization problem as formulated in Eq.(1).  
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where [ ]MxxxX ,..., 21= ( )1dxm Rx ∈ refers to a set of 3D 
SIFT descriptors as described above from a 3D training 
dataset. [ ]KvvvV ,..., 21= ( )1dxi Rv ∈  indicates the K 
bases, also known as the dictionary or codebook; and 

[ ]MuuuU ,..., 21= ( )1Kxm Ru ∈  denotes sparse codes for 
images based on codebook V. In addition, M refers to the 
number of total training samples in the training dataset, 
whereas λ  indicates the constant coefficient that is 

generated by 1L  norm (
1
⋅ ) regularization, which acts as 

the penalty function to produce sparse coefficients and 
being robust to irrelevant features. 

 
C. Max-pooling for Image Representation 

 
To take into account of spatial location of local features, 

a pooling technique is applied to the SIFT sparse code that 
is calculated from different regions of an image to create the 
representation of an image by concatenation. In this study, 
max-pooling technique is employed as opposed to average-
pooling by choosing the max value from a set of inputs as 
illustrated in Eq. (2). 

 

{ }Sjuz iji ,...,2,1,max ==                   (2)                      

where iju  in Eq.(2) indicates the ith ( ],1[ Ki∈ ) 3D SIFT 
sparse code for the jth ( ],1[ Sj∈ ) sub-volume or interest 
point within a pooling region, with K indicating the size of 
codebook V , whereas S refers to the total number of the 
sub-volumes in each pooling region. Figure 1 schematically 
demonstrates the pooling process, i.e., an MR cubic image 
being equally divided into 64 (= 4 × 4 × 4) regions, whilst 
12 pooling regions are drawn up from a clip of ultrasonic 
videos to acknowledge the differences of the structure of a 
moving heart at three levels. 
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(a) Pooling regions for 3D brain image 

 
(b)Pooling regions for echocardiogram video 

 
Figure 1. The pooling regions for 3D MR brain images (a) and 

echocardiograms (b) 
 

D. Comparisons between Datasets 

For still images, both histogram intersection and Chi-
square histogram are applied to measure the degree of 
similarity between two images. Whereas for video images, 
the comparison is based on viewport classification which is 
performed using an approach of multiclass SVM (Support 
Vector Machine) with a linear kernel that is calculated in 
Eq. (3).  
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where jF is the feature representation of video j.  With 
regard to binary classification, an SVM aims to learn a 
decision function based on the training dataset, which is 
defined in Eq. (4). 
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In order to obtain an extension to a multi-class SVM, the 

trained videos are represented as ( ){ }niii lF 1, =
, where

{ }Lli ...2,1∈  denotes the class label of trained video i. 
One-against-all strategy is applied to train the total number 
of  L, the binary classifiers.  

III. RESULTS 

A. Dataset Collection 
In this investigation, the data at our disposal are of both 

3D MR still brain images and 3D (i.e., 2D video) 
echocardiographs, all in the format of DICOM. The 
characteristics of these datasets are given in Table 1. 

TABLE 1. THE INFORMATION RELATED TO THE DATASETS AT 
THE DISPOSAL. 

 Still Brain Images Ultrasonic Motion Video 
Cardiac Clips 

Normal 34 14 
Abnormal 86 58 

Subject  120 72 
Resolution 500×500×45 (mm3) 434 × 636 (pixel2) × 26 

(frames) 
Imaging 

Tool 
GE Genesis_Signa 

15000T (1.5-T) whole-
body MR  

GE Vivid 7  
Ultrasound 

 
Total  120 219 

 
Additionally, the ground truth is based on the locations 

of lesions from brain images and eight viewpoints of heart 
video clips, which are marked by clinicians.  

B. Training 
In the training stage, a 3D brain codebook composed of 

64 sub-codebooks is obtained from 500 descriptors 
randomly selected from 960 sub-volumes. 

With regard to echo-cardiac video images, 80,000 
interest points firstly detected by Cuboid detector are 
randomly selected from the video clips (n=219) as a training 
dataset for the generation of the codebook.  

C. Comparison Results 
As discussed in the INTRODUCTION, 3D still images 

can also be represented using 3D texture-based approaches. 
Therefore comparison with the four popular texture 
approaches [3], is also carried out, with the comparison 
results given in Table 2, by which retrieval task focuses on 
the location of lesions by using the measure of mean 
average precision (MAP). 

TABLE 2. MAP VALUES FOR THE FIVE 3D APPROACHES 
INCLUDING GLCM, WT, GT, LBP AND SIFT 

Methods Without sparse 
coding 

With sparse coding 
Histogram 
intersection 

Chi-squared 
histogram 

3D GLCM 0.3034 0.3291 0.3510 
3D WT 0.3096 0.3375 0.3687 
3D GT 0.3074 0.3863 0.3954 

3D LBP 0.3308 0.4027 0.4012 
3D SIFT 0.3959 0.4013 0.4098 

 
As presented in Table 2, the approach of 3D SIFT that 

has been furthered in this research outperforms the other 
four with the average MAP value of 0.4098 according to 
Chi-squared histogram distance. In addition, the 
implementation of sparse coding improves the performance 
of all five approaches, specifically for 3D GT with MAP 
value increasing from 0.3074 to 0.3954, implying the 
significance of contribution of machine learning technique 
to the presentation of visual features. 

For video images, the retrieval is based on the 
viewpoint. Therefore in essence the procedure is of a 
classification. Table 3 illustrates the confusion matrix of the 
classification based on eight standard viewpoints. 

 
TABLE 3. CONFUSION MATRIX FOR 8 ECHOCARDIOGRAM VIEW 

CLASSIFICATION WHERE AR=ACCURACY RATE,  ER=ERROR 
RATE, AND THE VERTICAL AXIS REFERS TO GROUND TRUTH 
 Classification Results  AR 

( ) j
T
iji FFFFk =,

3



 A2C A3C A4C A5C PLA PSAA PSA
P PSAM  

A2
C 32 2 6 0 0 2 0 0 0.76 
A3
C 6 17 6 0 0 3 0 0 0.53 
A4
C 5 1 26 0 2 0 0 0 0.76 
A5
C 1 0 2 4 0 0 0 0 0.57 
PL
A 1 0 0 0 34 2 0 0 0.92 
PS
AA 2 0 0 0 4 28 1 4 0.72 
PS
AP 0 0 0 0 2 5 12 0 0.63 
PS
AM 0 0 0 0 1 3 1 4 0.44 

ER 0.32 0.15 0.35 0 0.21 0.3 0.14 0.5  
 

In summary, the average AR (AAR) for all classes is 
72% (=157/219), and the average ER (AER) is 28% 
(=62/219).  According to the data in Table 3, the most 
erroneous classification takes place within the classes 
having the similar view points, such as views taken from 
Apical angles (4 views) and Parasternal Short Axis (3 
views).  The unique view of PLA gives the best 
performance (AR=92%).  
 

D. Content-based Image Retrieval System of MRIAGE 
Figure 3 demonstrates a screenshot of the developed 

online retrieval system, MIRAGE at 
http://image.mdx.ac.uk/time/demo.php.  Built upon the open 
source GNU Image Finding Tool (GIFT), the online system 
fosters the Query-by-Example (QBE) paradigm coupled 
with user-relevance feedback facility whereby retrieved 
images most closely resemble a query image in appearance. 
This system has been serving as an e-leaning tool for post-
graduate students and has currently accommodated over 
100,000 medical images of both 2D and 3D.  

 
Figure 3. The interface of developed online CBIR system MIRAGE, 
showing the retrieval results of 3D brain images. 

IV. CONCLUSION 
This paper presents the promises of feature wise 

representation using the synergy of 3D SIFT and sparse 
coding, in an attempt to lead to the application of CBIR to 
medical images in a clinical sector. In particular, both still 
and motion images of different modalities are under 
investigation and are being implemented in the online CBIR 
system, MIRAGE, for the intention of educational at 
present. Reflecting from the feedbacks given by the students 
who have used the system, searching and learning medical 
images by way of CBIR has shown significant advantages, 
especially for those who are new to each image modality as 
well as medical anatomy. It is anticipated that similar work 
will be conducted on 4D echocardiograms in the new future. 
In addition, the missing links between the features and their 
semantics at higher level will be bridged in the future. 
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