A Fast Approach to Segmentation of PET Brain
Images for Extraction of Features

Xiaohong Gao !, John Clark 2

1 School of Computeing Science,Middlesex University, London, NW4 4BT, United
Kingdom
x.gao@mdx.ac.uk
2 Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 2QQ,
United Kingdom
jcc24@wbic.cam.ac.uk

Abstract. Position Emission Tomography (PET) is increasingly ap-
plied in the diagnosis and surgery in patients thanks to its ability of
showing nearly all types of lesions including tumour and head injury.
However, due to its natures of low resolution and different appearances
as a result of different tracers, segmentation of lesions presents great
challenges. In this study, a simple and robust algorithm is proposed
via additive colour mixture approach. Comparison with the other two
methods including Bayesian classified and geodesic active contour is also
performed, demonstrating the proposed colouring approach has many
advantages in terms of speed, robustness, and user intervention. This
research has many medical applications including pharmaceutical trials,
decision making for drug treatment or surgery and patients follow-up and
shows potential to the development of content-based image databases
when coming to characterise PET images using lesion features.
Keywords: PET imaging, segmentation, additive colour mixture, Le-
sion detection.

1 Introduction

Positron emission tomography (PET) is an important tool for enabling quan-
tification of human brain function in three dimensions [1]. Through the use of
a diverse range of tracers, PET can provide quantitative information on, for
example, blood flow, glucose metabolism and neurotransmitter receptor bind-
ing potential. However, due to the nature of PET imaging with high noise to
signal ratios and its inability of showing anatomic structure, segmentation of
lesions, such as head injury and tumour poses great challenge. Due to its many
medical applications including pharmaceutical trials, decision making for drug
treatment or surgery and patients follow-up, lesion segmentation have been stud-
ied extensively by many researchers proposing many promising methods. One
group of researchers [2] study the tissue transformation and expansion or con-
traction effects in order to analysis Multiple Sclerosis (MS) on brain MR images.
Mathematical morphological operations have been applied in their study which



are also utilised to delineate lesion regions [3]. Active contour is another popular
technique in region detection and boundary delineation, which develops geomet-
ric and probabilistic models for shapes and their dynamics in real time. However
it suffers the problem of false attraction on noisy images and computational cost
[4]. Intelligent mesh algorithm is hence developed by researchers [5] to detect
lesion/tumour on CT and Mammography images. Other well known methods
for region detection and segmentation include multi-resolution segmentation [6],
wavelet based detection [7], texture segmentation [8], and neural network [9].
Multi-resolution scheme has been studied by [10] on the detection of speculated
lesions in mammograms, which specifically addresses the difficulty on predeter-
mining the neighbourhood size for feature extraction and fundamentally bases
on a linear phase non-separable 2-D wavelet transform.

Conventionally, each method only works well for one particular group of
images and performs worse on the other images. At most cases, the methods
mentioned above only work well for images with high contrast and low noise.
For the images with high noise to signal ratios, such as PET images, most of
lesion detection methods do not work well without considerable enhancements.

Statistical methods, for example, Bayes theorem, hence were introduced into
this field [11]. Although very promising, Bayesian classified requires large sample
data or called training data sets, which sometimes may not be obtained easily.
This is due to the fact that different tracer will generate different PET appear-
ance of images for the same subject, resulting different training sets have to be
provided.

In this study, a new approach is studied which applies additive colour mixture
approach, or called colouring approach, and is under the assumption that a
human brain bears similarity with reference of middle plane or middle line in
a 2D image form. This approach not only segments lesion robustly but also
visualises the lesion in colour, showing an advantage over the other approaches.

2 Methodology

Although most radiological images are in grey scale, colour has been widely
introduced in them primarily for the purpose of visualization to increase the
contrast between different regions [12]. The most common method is colour
map, or a lookup table, by which each colour corresponds to each intensity value
in an image. After replacing each pixel with its corresponding colour, the image
becomes colourful, generating a pseudo colour image with high contrast.

In some cases, colouring image becomes necessary, especially for fusing multi-
modality images, e.g., MR with PET, or CT with PET, to increase high contrast
of composite image while maintaining the property of each individual modality.
The common method is to colour interleaved pixels using independent colour
scales for each modality [13], showing the results of both visually pleasing and
easy to interpret.

A colour normally is represented by three independent values, hue, chroma
or saturation, and brightness/lightness. Hue is mostly applied in colouring and



contains three primary colours, red, green, and blue. The other hues, i.e., yellow,
orange, purple, can be generated by proper mixing of any of these three primary
hues (either by mixing coloured lights, e.g, in a computer monitor, or by mix-
ing ink as applied in a ink-jet printer). The mixing procedure can be additive,
whereby red, green, and blue are the primary colours (i.e., in a colour monitor),
producing white when all three hues of equal part being mixed together. The
opposite mixture is subtractive where cyan, magenta and yellow are the pri-
mary colours, which is mostly applied in printers in a CMYK colour system (K
represents black), producing black colour when mixing all these three primary
pigments with equal amounts. Additive colour mixture has been widely applied
to viewing medical images and implemented in some open source imaging soft-
ware including ImageJ(http://rsb.info.nih.gov/ij/), which is a convenient way
increasing colour contrast. In this study, additive colour mixture technique is
investigated to segment lesions of brain PET images.

2.1 Image Colouring

When an image displayed on a computer monitor, one pixel (or voxel in 3D form)
can be represented using Red (R), Green (G), Blue (B) colours. For example, in
an 8-bits monitor, the intensity range for each colour is 0-255. If all of R, G, and
B values are the same for a pixel, this pixel is presented in grey colour, arriving
at the intensity value being the average of the sum of these three colour values.
As such, other colours can be achieved by the proper mixture of these three
primary colours. For example, a yellow pixel can be achieved by the mixture of
R, G, and B where B=0, R>0 and G>0, whilst the combination of B>0, R>0
and G=0 will produce a purple colour.

If a 2D brain image with a lesion is represented as I and its reflected image
with reference of its middle line as Ir (a flip over image), I and I can then be
expressed as

I=1Ip+ 1o (1)

Ir =1Igr, + IR, (2)

where L represents lesions in the image, whilst O the rest (other) part of the
image. If I is coloured as red as R(I), and I p green and blue and are represented
as G(Ir) and B(IR) respectively, then

R(I) + G(Ig) + B(Ig)

= R(Ir +Io) + G(Ir, + Ir,) + B(Ir, + IRr,)

= R(I1) + R(lo) + G(Ir,) + G(Ir,) + B(Ir,) + B(IR,)

= R(I1) + Cyan(In, ) + Grey(Io)(3)

Since a brain image is symmetrical with reference to the middle line (to be
discussed below), apart from the lesion part, the rest of brain is more or less the
same as its reflected counterparts, resulting Io = Iro. Therefore the mixture of
red, green and blue for the non-lesion pixel would produce grey colour. Similarly
the adding of green and blue colour for the reflected lesion region would produce



Fig. 1. The procedure of additive colour mixture. From left to right: a). original image,
b). reflection of (a), ¢). (a) in red, d). (b) in green, e). (b) in blue, f). (¢) + (d) + (e).

a region with cyan colour. Fig. 1 illustrates the procedure of Eq. (3). The final
colour image only contains two colours of red and cyan with one colour associated
to the reflected lesion region, i.e., a false region. It is therefore helpful to get rid of
that colour first before delineation of lesion boundary. In Fig. 1, the false lesion
region is in cyan colour. In order to use meaningful colour attributes instead
of RGB space, HSI space is applied in this study to calculate hue, saturation,
and intensity values of each pixel. As there are only two hues in the image, it is
the saturation attribute that contributes more in processing the image, which is
calculated as Eq.(4) [14].

(R-G)+(R—B)
2

H = arccos

V(B=G)’ +(R-B)G - B) W

where H=360°-H. If (B/I)>(G/I)

3min(R, G, B)
= 1 _
5 R+G+ B )
B
[ REG+E o

The elimination of cyan colour can then be performed using hue attribute alone.
In order to get rid of some red colour that is very close to grey colour, i.e.,
the background, saturation can be added to the process in addition to hue. For
example, the images in Fig. 1 apply 10% saturation as threshold, i.e., any pixel



with less than 10% saturation will be classified as grey colour. It should be noted
that the threshold varies according to the tracers applied administrated to the
subject, which giving rise to different appearances of PET images and resulting
in different thresholds of saturation.

Once an image has only one colour left, a simplified k-mean clustering method
is utilised to cluster the lesion region. First, the image is divided into four equal
sub-regions (more sub-regions can be generated according to the need). Then
the centre of the red colours will be worked out, from which, colour clustering is
performed. Then the boundary is delineated using a circular cylinder co-ordinate
system with origin located at the centre of the lesion region. When the angle
coordinate rotates from 0° to 360, the radius reached to the edge of the lesion
region.

2.2 Locating Middle Line

The success of the above approach depends in some ways on the correctly located
symmetrical line of the brain , so that the reflection image with reference to this
symmetrical line is similar to the original image apart from the lesion regions.

There are two coordination systems when defining a 3D brain. The ideal
head co-ordinate system is defined as centred in the brain with positive Xg, Y,
Z axes pointing in the right, anterior and superior direction respectively [15].
With respect to this co-ordinate system, the bilateral symmetry plane of the
brain is defined as the plane Xy = 0, passing through the nose. This plane is
often referred to as the mid-sagittal plane of the brain. It is expected that a
set of axial (coronal) slices is cut perpendicular to the Zy (Y) axis, and the
intersection of each slice with the bilateral symmetry plane appears as a vertical
line on the slice [16]. In clinical practice however, a working co-ordinate system
XY7Z is applied. X and Y are oriented along the rows and columns of each
image slice, and Z is the actual axis of the scan. The orientation of the working
co-ordinate system differs from the ideal co-ordinate system by three rotation
angles, pitch, roll and yaw, and three translation differences, 7 Xy, VYo, and
VZo, respectively.

For each sagittal slice of brain PET image, its left pattern is symmetrical or
similar to its right pattern around middle symmetrical line. Hence, its reflection
image is similar to the original one. The cross-correction between the original one
and the reflected (and rotated) one can then be calculated. The biggest cross-
correction (CC) value should be achieved when the corrected rotation angle (6;)
and translation (cj) distance are located using Eq. (7).

CCl(ck,0;) = maz(max(X Corr(S;, rot(26,ref(S;, ck)))) (7)

where CC is the cross-correlation value, 6; the yaw angle, and ¢, the symmetrical
line on the 2D slice S;. Whlist ref (S;,cx) refers to the reflected image of S; with
reference of line at ¢, and rot represents rotation. When an image rotates 6
degrees, its reflected image rotates 26 with reference to the original image.



Table 1. The images used in this study with visible lesions (Ls) head injury (HI) and
tumour (T).

ID Diagnisis No slices L’ed slices Multi-Ls No detected Ls

1 HI 35 10 10
2 HI 35 5 5
3 HI 70 19 17
4 HI 35 7 7
5 HI 70 24 yes 22
6 HI 70 8 8
7 HI 70 8 8
8 T 69 5 yes 5
9 T 69 15 15
Total 523 101 97
3 Results

Table 1 lists the images studied in this research. One hundred and one slices of 2D
images with head injuries and tumors from 9 subjects are collected to evaluate
this approach. Although subject number 7 in Table 1 has images with 5 tracers
i.e., FDG2D, FDG3D, O15C0O2D, O15C0O3D, Ol5water3D, only images with
tracer of Ol5water3D have visible lesions and are included in the study. Similar
cases applied to the other subjects. The tumor data are with ®F-FLT (3_-
Deoxy-3_-18F-fluorothymidine) tracer and are used to study cell proliferation,
during which ten subjects are recruited in the '8 F-F LT study with two normal
subjects as control. Again, only two sets of data are visible and used in our study.
Experimental results show that all the lesions are correctly delineated using
colouring approach. Figure 2 shows the delineation results for some images with
different tracers in-take, showing the appearance of images appears differently.
These images have been aligned correctly, i.e., the symmetrical line is in the
middle with 0° rotation. Due to the movement of subject, some images are
not aligned around the central line. Finding the symmetrical line is then to be
performed first as shown in Fig. 3.

Since the edges are delineated using cylinder co-ordinate systems with the
scanning line starting from the lesion centre and going from 0° to 360°, some
edges may look zigzagged, which is however can be overcome using a smoothing
algorithm. After the lesion has been delineated on the rotated and translated
image, the delineation of lesions from the original images can then be performed
by adding cropping distance and then rotating back the rotated degrees (-6)
obtained during middle line finding.

4 Comparisons

Comparison with two other popular algorithms are made. The first one is Bayesian
algorithm and the other is geodesic active contour approach. The Bayesians clas-



Fig. 2. Delineation results for images. The left column shows the original images, the
middle column the images with lesions in red colour, and the right column the lesions
with delineated boundary.

Fig. 3. The steps to from finding symmetrical line to delineating lesion boundary. Top
row: (left) original image, (middle) its rotated image with middle line, (right) cropped
image from middle. Bottom row: (left) images with coloured lesion region, (middle)
edge delineation of lesion region, (right) edge delineation on the original image based
on the middle image.



sifier applied in this research is illustrated in Eq.(8).
1
di(7) = InP(C;) = 5((& — ) G (& —my) 8)

where P(C}) is the probability of occurrence of class C;, i = 1, 2, ..., N, Z the
sample pattern, m; the mean of Z from C;, and d; the decision function. For
example, if a pixel is represented as Z, and d;(Z) > d;(&), then Z belongs to
class C; class (e.g., background) rather than C; (lesions). Sometimes, a error
threshold e is introduced to the Eq. (8) so that if zeC;, then

di(z) > d;(Z) + € (9)

The second approach studied in this research is geodesic active contour [4],
an expansion of snake contour algorithm. To delineate a lesion from 2D PET
images, where the lesion corresponds to a region whose pixels are of different grey
level intensity, the geodesic contour evolves to the desired boundary according
to intrinsic geometry measures of the image. When a user provided an initial
guess of the contour (seed), the contour propagates inward or outward in the
normal direction driven toward the desired boundaries by image-driven forces.
The initial contour should be placed inside the lesions. The final contour is
extracted when the evolution stopped. The front contour evolves according to

Cy =g(I)((1 —ek)N) = (Vg- N)N (10)

where level set equation takes form of Eq.(10) to detect boundaries with high
differences in their gradient values, as well as small gaps.

¢ +91(1 —€k)|[Vp| = VP -V =0 (11)

where
1

9109 = T @, * 1) (12

which shows that the image I(x,y) convolves with a Gaussian smoothing filter
G whose characteristic width is . And

Pla,y) = =|[V(Go  I(z,y)] (13)

which attracts the surface to the edges in the image. Whlist coefficient 3 in Eq.
(11) controls the strength of this attraction. Figure 4 illustrates some comparison
results.

On the surface, Fig. 4 shows the delineation results are very much comparable
between these three methods. However, for Bayesian approach, the training sets
of data will be needed in order to get accurate results, which is not always
easy. Different tracers give different appearances of PET images, leading to the
requirement of different sets of training data. User intervention will therefore be
needed. In Fig. 4, 37¢ row, the black dots in the right image represents edges of
the lesion detected using Bayesian classifier, whilst the white dots the smoothed



Fig. 4. Comparison results of delineation of lesion using 3 approaches. From top to
bottom: original image, the method proposed in the paper, Bayesian classifier, and
geodesic active contour.

edge combining the edges of both lesion and the brain. For the data in Table
1, 96% lesions have been delineated accurately using Bayesian classifier, the
remaining 4% being the cases with very confuing boundary between lesions and
the image background.

As for geodesic active contour approach, seed point is needed from users.
Due to the heavy calculation involved, this approach takes much longer than the
other two methods (up to a few minutes sometimes). in Fig. 4. Although 100%
successful rate has been achieved for delineation of the data given in Table 1,
sometimes, the arrived contour is not always the desired boundary.

5 Conclusion and Discussion

In this study, three methods have been studied and compared for lesion de-
lineation, including additive colour mixture, Bayesian classifier, and geodesic
contour approaches. Each method has its own pros and cons. Overall, additive
colour mixture, or colouring, approach appears to be better in terms of robust,
speed, and automation. However, the colouring method has its own limitations.
It only applies to the images with symmetry, by which colour adding can then



be applied. For any other images without symmetry, the colour additive mix-
ture can also utilised as long as there is a template available where the image of
interest is registered to spatially.
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